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1 Abstract

We find the complexity of PATL with regards to imperfect information and
imperfect recall in an explicitly represented system. We begin by motivating
our logic by an example of the board game Risk, showing that it is a multi-agent
probabilistic game. We add a restriction of being able to only see adjacent tiles
as a case for imperfect information. Following that, we fix the syntax and
semantics of our language and return to show how this fits with our motivating
example.
Model-checking PATL with imperfect information and imperfect recall can be
done by way of a linear algorithm. We first sort out the different cases. The
more complex cases rely on guessing a strategy σA, then pruning our model,
and finally solving the resulting PCTL formula. Hence, the complexity of PATL
with imperfect information and imperfect recall is ∆p

2.

2 Introduction

Consider a modified version of the board game Risk. In this game, we have
two to six players played over a map of Earth separated into 42 territories
and 6 continents [6]. Players take turn in playing their troops and to conquer
adjacent territories determined by dice rolls. Players are also allowed to form
coalitions to act towards a specific goal, with the ultimate goal of occupying
every territory on the board and eliminate other players. We currently ignore
the card mechanics of Risk, and focus solely on infantry troops attacking and
moving based on dice rolls. Cases like this are what Probabilistic Alternating-
Time Temporal Logic (PATL) model. They are probabilistic in nature as the
player’s movement outcomes are determined by dice rolls. Players are also able
to form coalitions and their movements are prescribed by the map (adjacent
tiles only). Risk is an example of a game of imperfect recall, as how we get
to step Si depends only on Si−1. Traditionally, in Risk we can see how the
whole board is set up, which is an example of perfect information [7]. So, let
us modify Risk such that players are only given information of tiles adjacent to
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theirs. This creates a game of imperfect information as players do not know the
conditions of all states at times during the game. To describe this situation, we
can augment PATL with imperfect information and imperfect recall [3]. In this
paper, we investigate the model checking complexity to our logical system[4].

2.1 Related Works

We discuss works that are relevant to PATL and its model checking techniques.
[1] provided a foundation to construct our language while [2] and [3] helped
construct our definition of imperfect information and imperfect recall leading to
our system. All three of the paper also explored model checking techniques for
probabilistic systems. For more in-depth information regarding model checking
of probabilistic systems, we refer the reader to [5] and [6].

3 Probabilistic Alternating-time Temporal Logic

In this section, we introduce PATL with imperfect information and imperfect re-
call (PATLir) along with its models, Probabilistic Concurrent Game Structure
with Incomplete Information (PCGSi). We assume a familiarity with Measure
Theory to explain some of the theory concerning Markov Decision Processes.

3.1 Syntax

The syntax of PATLir is given below:

Definition 1 (PATL)

ϕ ::= p | ¬φ | ψ ∧ φ | 〈〈A〉〉 [Xφ]./r | 〈〈A〉〉 [φUψ]./r | 〈〈A〉〉 [φRψ]./r

where p ∈ AP , A ⊆ Ag, ./∈ {≤, <,=, >,≥}, and r ∈ [0, 1]

Intuitively, we let 〈〈A〉〉 [ψ]./r express that players of a coalition A are able to
collectively enforce ψ with a probability ./ r. We can define the other basic
logical connectives ∨,→,↔ in terms of ∧ and ¬. We let Xφ to express that φ is
true on the next state, φUψ to mean that φ holds at least until ψ becomes true,
and φRψ to mean that φ holds only until ψ does. Similarly, we define other
operators like Fψ in terms of our 3 fundamental operators.

3.2 Semantics

We let the set of probability distributions on X is denoted by D(X). Our model
is defined as follows:

Definition 2 A PCGSi is a tuple G = 〈Ag, S,AP, λ,Act, d, PI, δ,∼a〉 such
that:

• Ag is the set of agents such that agent a ∈ Ag, and a coalition A is
A ⊆ Ag.
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• S is the set of states such that state s ∈ S.

• AP is the set of atomic propositions such that p and q ∈ AP .

• λ : S → ℘(AP ) is the labelling function.

• Act is the set of actions.

• d is a protocol function d : (Ag × S) → (℘(Acta) \ ∅) which indicates a
set of actions available to a at a specific state. We require that if s ∼a s′
then d(a, s) = d(a, s′), that is, agents have the same actions available in
indistinguishable states.

• PI be the initial distribution PI : S → [0, 1] such that
∑
s∈S PI(s) = 1.

• δ is a probabilisitic transition function such that for each state s and each
joint action 〈j1, . . . , jk〉, a probabilistic transition function δ returns the
conditional probability δ(s′|s, 〈j1, ..., jk〉) of a transition from s to s’ if each
player a ∈ Ag chooses move ja. A joint action 〈j1, . . . , jk〉 at s is such
that ja ∈ d(a, s) for each agent a. Given a state s, D(s) is the set of joint
actions available in s.

• for every a ∈ Ag, the indistinguishability relation ∼a is an equivalence
relation on S.

A path of G from state s is an infinite sequence of states π = s, s0, s1, ... and
we let Ω be the set of all paths, with Ωs be the set of all paths starting from s.

Having defined our semantics, we now define the concept of a strategy and
outcome with regards to imperfect information and imperfect recall.

We define imperfection information by the indistinguishability relation ∼a⊆
S × S, one per agent a ∈ Ag. If we have s ∼a s′ for states s and s′ then agent
a cannot distinguish between s and s′. ∼a is an equivalence relation. Assume a
PCGSi G. An imperfect information strategy (ir-strategy) is:

Definition 3 (Uniform Memoryless Strategy) A (uniform memoryless) strat-
egy for player a is a function σa : S 7→ C(a), for C(a) =

⋃
s∈S d(a, s) the set of

all actions available for player a at any state s, such that for all states s, s′:

1. σa(s) ∈ d(a, s) (the strategy has to return available actions);

2. if s ∼a s′ then σa(s) = σa(s′) (the strategy has to return the same action
in indistinguishable states).

The set of an agent a’s ir-strategy is represented by Σira and we write Coali-
tion A’s collective ir-strategy as ΣirA =

∏
a∈A Σira . A strategy σa prescribes only

moves available to a. We let Σa denote the set of all strategies available to a.
If we have σA, we write the set of possible outcomes of σA starting at a state s
as Outcomes(s, σA) of measures that agents in A enforce when σA is followed
and the probability distribution OσA

s ranges over Outcomes(s, σA).
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Let a coalition A and A have strategies σA and σA. Once a starting state
s and strategies have been chosen, the game is reduced to a Markov Decision
Process. The probability of a path can be represented by a transition probability
function.

We can also define an observation function from ∼a:

Definition 4 (Observation Function)

An observation function Oa : S → O such that for every agent a and state s,
Oa(s) is some observation o ∈ O. Then s ∼a s′ iff Oa(s) = Oa(s′) so we also
have Oa(s) = {s′ | s ∼a s′}.

Let us return to the Markov Decision Process. Often, we will want to know
what the probability is of reaching a set of events of interest to us and so we
introduce reachability probabilities:

Definition 5 (Reachability Probability) Let ♦B represent a set of events
that are of interest. Then:

• ♦B is a measurable set of paths and agrees with the union of all basic
cylinders Cyl(s0...sn).

• s0...sn is a path fragment in an MDP M such that s0...sn−1 /∈ ♦B and
sn ∈ ♦B. pathsfin(M) ∩ (S \ B) ∗ B to represent the set of all paths
fulfilling that condition and the cylinder sets are disjoint.

• The probability of reaching B: PrM(♦B) =
Σs0...sn∈pathsfin(M)∩(S\B)∗BPr

M(Cyl(s0...sn)) =
Σs0...sn∈pathsfin(M)∩(S\B)∗Bιinits0 · P (s0...sn).

• The probability of reaching a B state in n steps in M through states C
only is given by: PrM(C ∪≤n B) = Σt∈BΘM ′

n (t).

We let M ′ = MB∪(S\(C∪B)) and ΘM0 = ιinit. For in-depth understanding, we
refer the reader to [5].

Having defined the necessary concepts, we now define the semantics formally.
We write G, q |=ir ϕ to show that state q satisfies ϕ in the structure G with
imperfect information and imperfect recall. We omit G when it is clear we are
referring to G.

Definition 6 The satisfaction relation |=ir is defined for all states and paths
of G inductively as follows:

q |=ir p p ∈ λ(q)
q |=ir ¬φ iff q 6|=ir φ
q |=ir φ ∧ ψ iff q |=ir φ and q |=ir ψ
q |=ir 〈〈A〉〉 [Xψ]./r iff for some ir-strategy σA ∈ ΣirA ,

OσA
s (π ∈ Ωs | π[2] |=ir ψ) ./ r

π |=ir 〈〈A〉〉 [φUψ]./r iff for some ir-strategy σA ∈ ΣirA ,
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OσA
s (π ∈ Ωs | for some i ≥ 0, π[i] |=ir φ and for any

0 ≤ j < i, π[j] |=ir φ) ./ r.
π |=ir 〈〈A〉〉 [φRψ]./r iff for some ir-strategy σA ∈ ΣirA ,

OσA
s (π ∈ Ωs | for some i ≥ 0, π[i] |=ir φ and for all

0 ≤ j ≤ i, π[i] |=ir ψ, or for all 0 ≤ j ≤ i, π[i] |=ir ψ) ./ r.

3.3 PCGSi and Risk

Having formally defined our logical system, we now return to illustrate that this
does fit our motivating example. The following picture illustrates Risk with ir:

Figure 1: Risk board game as seen by the red player

Before we proceed, an explanation about the colours are needed. We assume
the role of the red player, who is currently picking the Middle East to attack
adjacent regions. This gives out 4 arrows to show which territory to attack.
The territory available for attack from the Middle East is coloured bright green
while other territories are more muted. The muted red colours mean that the
Red player is unable to make any attacks. For the territory in Mexico, it is
unable to attack Latin America as there is only one troop stationed on that
territory.

We see that in a P-iCGS G = 〈Ag, S,AP, λ,Act, d, PI, δ,∼a〉 for the above:

• There can be 3 agents in Ag, the red, yellow, and green player.

• The set of states consist of consists of functions f : T → (Ag×N) for each
territory which states each player a has x ∈ N troops in that territory.
For instance: the red player has 4 troops in Greenland.

• AP consist of statements such as ”Red player wins” and ”All of Green
player’s troops in Australia are destroyed”.
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• Act consists of functions attack(T,m) where T is a territory and m is
the number of troops. For instance: ”Red player attacks South Africa
territory with 2 troops”.

• The protocol function limits available actions. For instance, Red cannot
attack Great Britain from Greenland because they are not adjacent terri-
tory. We can formalise it as such: For agent a and state s, the protocol
function is d(a, s) = {attack(T,m) | where s controls some T ′ adjacent to
T}.

• Instead of equivalence relation, an observation function is equivalent and
provides a better illustration. An observation function in Risk is best
demonstrated as Red noticing that West Africa has 14 troops stationed:
Oa(s) = {T ′ | a controls some T adjacent to T ′},

• PI is our initial distribution, where players have their starting territories
and troops. For a game of 3 agents we have

(
42
14

)(
28
14

)
(14105) equal probabil-

ities, or around (4, 076667183)(10149) equally possible initial distributions.

• δ comes when a player invades a territory, and the outcome is determined
by dice rolls until the territory is either defended or gained. The attacker
may play 3 dices and the defender 2, depending on the number of troops
available. The highest outcomes determines which player loses their units.
For instance, Red is attacking Green from Middle East to India. The
probability that Red wins the territory is 57.87%. There does not seem
to be a general formula to compute the probabilities of Risk, hence a
table from Data Genetics serves to illustrate the probabilities of different
attackers and defenders. For δ, only one player is making a move, the
rest are just defending. So, in a function δ(s′|s, 〈ja, ..., jn〉), if player a is
making a move ja = attack(T,m), then ∀i 6= a, jn = idle. Note that at the
end of every turn, players receive armies based on territories they control,
with extra amounts handed to them for each continent they control. For
instance, a player controlling Australia gains 2 additional infantry per
turn.

Figure 1 can also help illustrate the semantics of PATLir:

1. Let us illustrate 〈〈A〉〉 [Xψ]./r with the case where Red takes over Central
Africa in the next turn. Then 〈〈A〉〉 [Xψ]./r would be true iff ./ r is
≥ 88.98.

2. 〈〈A〉〉 [φUψ]./r can represent statements such as ”Red will hold all territory
until North America belongs to Red”.

3. 〈〈A〉〉 [φRψ]./r can represent scenarios such as ”Red holds Middle East until
he takes over all of North and South America”.
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4 Model Checking

In this section, we apply model checking techniques to determine the complexity
of PATLir. For now, we work with explicit representations of a system on this
paper. Our strategy to find the complexity of PATLir is similar to that of
ATLir: First, we consider a linear algorithm, which sorts different cases based
on the formula structure. We guess a strategy σA of A by an NP-Oracle. Then,
the strategy is verified by pruning. We know that the result of pruning our
PATLir is a PCTL formula as PATL logics are generalisations of PCTL.
Finally, we model-check the resulting PCTL formula.

Theorem 1 For G and PATLir formula ϕ, the PATLir model-checking prob-
lem M |= ϕ can be solved in time ∆p

2

Proof: The following is a linear algorithm for the time complexity of PATLir
under an explicitly represented system:

Algorithm 1: Function mcheck(G, ϕ)

Input: Finite system M with state set S and PATLir formula ϕ
Output: Sat(ϕ) = {s ∈ S | s |= ϕ}

1 case(ϕ)
2 ϕ ∈ AP : return λ(p)
3 ϕ = ¬φ : return S \mcheck(G, φ)
4 ϕ = φ ∧ ψ : return mcheck(G, φ) ∩mcheck(G, ψ)
5 ϕ = 〈〈A〉〉 [Xφ]./r return: pre(G, A,mcheck(G, φ))
6 ϕ = 〈〈A〉〉 [φUψ]./r Guess σA ∈ ΣirA . Then prune(M, σA). MσA

returns: P./r(φUψ). Apply mcheckPCTL.
7 ϕ = 〈〈A〉〉 [φRψ]./r Guess σA ∈ ΣirA . Then prune(M, σA). MσA

returns: P./r(φRpsi). Apply mcheckPCTL.

Definition 7 Function pre(G, A, S) is an auxiliary function that returns the
exact set of states S′ such that when the system is in a state s ∈ S′, agents
in A can cooperate and enforce the next state to be in S consistent with ./r.
Return {s | ∃jA such that ∀jAg\A, δ(s, jA, jAg\A) ∈ S and δ(s, jA, jAg\A)./r}.
We have dσA

(a, s) = d(a, s) for a 6∈ A and dσA
(a, s) = d(a, s)∩σa(s) for a ∈ A.

pre(G, A, S)

Definition 8 Function prune(M, σA) s a function that prunes our system M,
returning MσA

= 〈Ag, S,AP, λ,Act, dσA
, δσA

, P I,∼a〉. If we have d(a, s) =
{act1, act2} and σA(s) = act1, then dσA

(a, s) = act1 and the function δσA
is

consistent with σA. For a move ja ∈ d(a, s), we have δ(s′ | s, 〈j1, . . . , jk〉) =
δ(s′ | s〈j1, . . . , jk〉).

mcheckPCTL calls to any established PCTL model-checker, like that of [5].
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