
Redactable Signature Schemes and Zero-knowledge Proofs: A

comparative examination for applications in Decentralized

Digital Identity Systems

Bryan Kumara, Mark Hooper, Carsten Maple, Timothy Hobson, and Jon Crowcroft

The Alan Turing Institute, London, U.K. Email: bkumara, mhooper, cmaple, thobson, jcrowcroft @turing.ac.uk

23 July 2023

Abstract

Redactable Signature Schemes and Zero-Knowledge Proofs are two radically different approaches to enable privacy.
This paper analyses their merits and drawbacks when applied to decentralized identity system. Redactable Signatures,
though competitively quick and compact, are not as expressive as zero-knowledge proofs and do not provide the same level
of privacy. On the other hand, zero-knowledge proofs can be much faster but some protocols require a trusted set-up.
We conclude that given the benefits and drawbacks, redactable signatures are more appropriate at an earlier stage and
zero-knowledge proofs are more appropriate at a later stage for decentralized identity systems.

1 Introduction
A critical aspect of economic growth is the integration of the
internet as a medium for innovation and exchange [16]. It is
vital that digital identities which computationally represent
external agents are able to address stakeholder concerns as
each digital identity system comes with its own set of trade-
offs that considers various factors such as security, reliability,
resilience, accessibility, and scalability [17] [16] [5] [2]. A key
issue these systems may consider is the degree to which a sin-
gle party may exert control over the operation of the system.
Centralized digital identity systems usually contain a dedi-
cated registration process and store information in a central
database [13]. However, the centralization of authority and
storage carries the risk of abuse such as exclusion and censor-
ship alongside individual profiling [20].

One approach to address these concerns is to adopt a de-
centralized identity system. This approach typically involves
the use of transparent, open networks and protocols with vol-
untary participation in the attempt to minimize data collec-
tion or formal enrolment [23]. To achieve this, Decentralized
Identifiers (DIDs) and Verifiable Credentials (VC) are typi-
cally used. The former is a globally unique identifier which
allows a party to be identified in a verifiable and persistent
manner without the need of a centralized registry. The latter
is an open standard for digital credentials with a digital sig-
nature. A VC can be issued by anyone and can be presented
for verification by everyone. A combination of DIDs and VCs
gives individual parties control of their digital attributes with-
out a central authority [4].

DIDs and VCs rely on some verification mechanism to es-
tablish truth. This can be done through cryptographic proto-
cols such as a digital signature which ensures a message was
created by a known sender without tampering [15]. There
are interesting protocols one can construct using digital sig-
natures, and in this paper we will discuss Redactable Signa-

ture Scheme (RSS). RSS builds on top of digital signatures
by allowing a third party to redact or remove parts of a mes-
sage and still derive a valid signature. Another approach is to
adopt Zero-Knowledge Proof (ZKP), which is a mathematical
argument that convinces verifiers that some computation has
been performed correctly but reveals nothing else. ZKPs are
complex constructions, and can be implemented with variants
that provide their own set of trade-offs.

Both RSS and ZKPs address the issue of privacy-
preserving verification in the context of decentralized identity
systems. Individual identities no longer need to pass through a
centralized system where empowered nodes could abuse their
privilege, but users can also protect their privacy when pre-
senting their digital identity by retaining agency over what
information they would like to disclose to others. RSS allows
one to validly redact parts of a VC, whilst ZKPs allows users
to prove that they meet some access criteria without having
to show their VC at all. These protocols address the issue
of privacy and agency for credential holders. For instance,
a decentralized identity system may be used to check that a
user is not below the legal age limit for purchasing alcohol
when entering a bar. The credential holder would present
their VC to a verifier for a check on their age, which is visible
in the attributes section. However, a holder may not want
to present the whole of their credential, which may include
other attributes such as address, marital status, and national-
ity. RSS allows the redaction of other attributes, leaving only
the birth date on the VC for verification. ZKPs takes it a step
further, with the verifiers accepting a proof that the holder of
a VC is older than the legal age but never seeing the VC itself.

This paper examines the benefits and drawbacks of RSS
and ZKPs for VCs. Though both schemes enable a higher de-
gree of privacy and control for the holder of a credential, they
are very different protocols that impacts the overall system in
various ways. We conclude that given their trade-offs, they

1

ar
X

iv
:2

31
0.

15
93

4v
1

 [
cs

.C
R

]
 2

4
O

ct
 2

02
3

can actually be harmonized by being implemented at different
stages of an decentralized identity system to provide a high
level of user privacy to best ameliorate their shortcomings.

2 Background

2.1 Redactable Signature Schemes

Public-key cryptography, which encompasses digital signa-
tures and zero-knowledge proofs, rely on the hardness of solv-
ing some mathematical problems. This paper focuses pairing-
based cryptographic techniques, which consists of three bilin-
ear groups G1,G2,GT and a bilinear map e : G1×G2 → GT .
These groups and mappings satisfies the following properties
for some prime order p:

• for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) =

e(g, g̃)aḃ;

• for g ̸= 1G1
and g̃ ̸= 1G2

, e(g, g̃) ̸= 1GT
;

• the map e is efficiently computable.

There are three different types of pairings - Type 1 pair-
ing where G1 = G2, Type 2 pairing where G1 ̸= G2 with
an efficiently computable homomorphism ϕ′ : G2 → G1, and
Type 3 pairing where G1 ̸= G2 with no efficiently computable
homomorphishms ϕ : G1 → G2 and ϕ′ : G2 → G1. We only
consider Type 3 pairing in this paper [6].

The RSS construction we examine relies on following com-
putational assumptions for its security [6]:

• Symmetric Discrete Logarithm (SDL) Assumption:
Given (g, ga) ∈ G2

1 and (g̃, g̃a) ∈ G2
2, it is hard to recover

a.

• Extended Decisional Diffie-Hellman (EDDH) Assump-

tion: Given ({ga·ci}2n2

i=0, {gb·c
i}n−1

i=0 , {gc
i}3n2

i=1, {gd·c
i}2n2

i=1 ∈
G7n2+n+2

1 and ({g̃ci}2n2

i=1, g̃
d, {g̃a·c1}i∈[1,2n2]\[n2−n,n2+n],

it is hard to decide if z = a · b · cn2

+ b · d or z is random.

With these foundations, we can construct the Pointcheval-
Sanders (PS) digital signature. This signature is re-
randomizable, meaning that given a valid signature one can
derive a new version of that signature on the same message
by introducing a random element [26]. It will be a useful
property as we construct RSS from PS. To sign a message
m = (m1, ...mr) ∈ Zr

p, the PS scheme does the following [6]:

• Setup(1k): Given a security parameter k, output pp ←
(p,G1,G2,GT , e) of type 3 bilinear groups.

• Keygen(pp): given the public parameters, g̃
$← G2

and (x, y1, ..., yr)
$← Zr+1

p , compute (X̃, Ỹ1, ..., Ỹr) ←
(g̃x, g̃y1 , ..., g̃yr). Let the secret key sk = (x, y1, ..., yr)
and the public key pk = (g̃, X̃, Ỹ1, ..., Ỹr).

• Sign(sk,m1, ...,mn): Generate a random h
$← G2 and

outputs the signature σ ← (h, h(x+Σyj ·mj))

• V erify(pk, (m1, ...mr), σ): Given a signature σ =
(σ1, σ2), check if σ1 ̸= 1G1

and e(σ1, X̃ · ΠỸ
mj

j) =
e(σ2, g̃) are satisfied. If it is, return 1 else return 0

For proofs of correctness and security alongside a more com-
prehensive overview of the PS signature scheme, readers
should refer to [6]. Given the PS signature scheme, one only
needs slight modification to reach the RSS construction. The
idea of this RSS is that given a set of messages {mi}i∈I and an
associated signature σ, one can redact parts of a message i ∈ I
for some I ⊂ [1, n] and I = [1, n] \ I such that the signature
is valid for {mi}i∈I . For a more comprehensive treatment of
RSS that covers alternative constructions and features, read-
ers should refer to [1].

Intuitively, this RSS construction uses the PS signature
scheme and aggregates the redacted messages into one ele-
ment. To prove that this element was generated honestly a sec-
ond element is calculated from the first. To avoid a quadratic
scaling based on the length of the message that previous con-
structions RSS suffered from, this scheme starts from a mod-
ified instance of the PS scheme where the secret key contains
two scalars x, y and a hash function is used to create scalars
that indicate a commitment on which indexes i ∈ [1, n] have
been redacted, preventing a maliciously generated signature.
A second pairing equation is added for the verification process
to check the scalars generated from the hash function. This
results in a constant signature size and a public key that scales
linearly to the message length n, which is a notable improve-
ment from previous RSS schemes. A full examination of this
RSS construction covering security proofs can be found in [26].

Given a message of length n, the RSS Scheme we consider
proceeds as follows:

• Keygen(1k, n): Given a security parameter 1k and an in-
teger n, generate two random elements (g, g̃)← G1×G2

and scalars (x, y)← Z2
p. Then, compute the following:

1. X̃ ← g̃x

2. Ỹi ← g̃yi∀1 ≤ i ≤ n

3. Yi ← gyi∀i ∈ [1, n] ∪ [n+ 2, 2n]

The secret key sk is (x, y) and the public key pk
is (H, g, g̃, {Yi}ni=1, {Yi}2i=n+2n, X̃, {Ỹi}ni=1) where H :
{0, 1}∗ → Z∗

p is the description of the hash function.

• Sign(sk, {mi}ni=1): Given a secret key sk and n mes-

sages m1, ...,mn, generate a random element σ1
$← G1

and compute σ2 = σ
x+Σn

i=1yi·mi

1 . Let σ3 = 1G1
and

σ̃ = 1G2 . Output a signature σ = (σ1, σ2, σ3, σ̃).

• Derive(pk, σ, {mi}ni=1, I): Given an index I ⊆ [1, n] of
message segments we would like to retain, a message m,
its associated signature σ, and a public key pk, gener-
ate two random scalars (r, t) ← Z2

p and compute the
following:

– σ′
1 ← σr

1

– σ′
2 ← σr

2 · (σ′
1)

t

– σ̃′ ← g̃t ·Πj∈I Ỹ
mj

j

where Ī = [1, n]\I. For all i ∈ I, compute the following
scalar ci ← H(σ′

1||σ′
2||σ̃′||I||i) which is used to calculate:

– σ′
3 ← Πi∈I [Y

t
n+1−i ·Πj∈IY

mj

n+1−i+j]
ci

The derived signature is σ′ = (σ′
1, σ

′
2, σ

′
3, σ̃

′) for a
redacted message {mi}i∈I .

2

• V erify(pk, σ, {mi}i∈I): Given a signature σ, a public
key pk, and a message {mi}i∈I , if σ1 = 1G1

, return 0.
Otherwise, test if both equations hold before returning
1:

– e(σ1, X̃ · σ̃ ·Πi∈I Ỹimi) = e(σ2, g̃);

– e(σ3, g̃) = e(Πi∈IY
ci
n+1−1, σ̃);

Note that the public key of the issuer is sufficient to gen-
erate a derived signature, which allows a holder of a creden-
tial redact and derive signatures without informing the issuer
which is just the feature we’d like users to have in a decen-
tralized ecosystem.

2.2 Zero-Knowlege Proofs

Zero-knowledge proofs (ZKPs) are methods where a party
called the prover can prove to another party called the ver-
ifier that a given statement is true without revealing any ad-
ditional information [22]. Traditionally, a prover can show
knowledge of a certain piece of information by simply reveal-
ing it. However, ZKPs allows one to prove possession of certain
secret knowledge called a witness which satisfies some state-
ment without revealing the witness itself or any additional
information [22]. ZKPs have a diverse range of constructions:
some require an initial set-up phase, represent computations
differently, and some protocols may involve multiple rounds of
interaction between the prover and the verifier [22].

For the purposes of this paper, we consider a type of ZKP
called Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (ZK-SNARK) which are efficient in terms of size
and verification time (Succinct), does not require multiple
rounds of communication between the prover and the veri-
fier (Non-interactive), and provides sound proofs against a
polynomial-bounded prover (Arguments of Knowledge) [24].
Theoretically, a protocol is defined as zero-knowledge with re-
gards to a simulator. This is a machine that operates in a
theoretical world that is indistinguishable from the real world
for a party that attempts to decide if knowledge was leaked.
In this theoretical world, the the simulator can compute a
proof without anything else but by just knowing the truth of
the statement. A protocol is then zero-knowledge if a proof
produced by a simulator who does not know the witness is the
same as one produced by a real-world prover that knows the
witness [24].

The efficiency of ZK-SNARKs in terms of size, speed, and
communication makes this an attractive protocol for anony-
mous disclosure. However, ZK-SNARKs require an initial
set-up phase that requires trust. This procedure generates
a common set of parameters called the common reference
string (CRS) that must be used every time we run a ZK-
SNARK proof. CRS generation requires trust as parties in-
volved must delete by-products of the procedure called toxic
waste which may otherwise be used to generate forged proofs
[24]. Formally, a ZK-SNARK uses some efficiently decidable
binary relation R with pairs (u,w) ∈ R where u is called
the statement and w is the witness. A non-interactive ar-
gument for R consists of probabilistic polynomial algorithms
Π = (G,P, V er, Sim) where:

• (crs, vrs, td) ← G(1λ,R): Given a securty parameter λ

and a relation R, output a common reference string crs,
a trapdoor td, and a verification key vrs.

• π ← P (crs, u, w): Given a common reference string crs,
a statement u, and a witness w, the prover algorithm
outputs some argument π.

• b ← V ers(crs, u, π): Given an input statement u, and
argument π, and a common reference string crs. the
verifier algorithm outputs b = 1 if the proof is accepted
and b = 0 otherwise.

• π ← Sim(crs, td, u): Given a trapdoor td, a statement
u, and a proof π, the simulator returns an arguement π.

.

An in-depth exploration into the exact procedures of ZK-
SNARKS is complicated and lies outside the scope of this pa-
per. [29] [21] [18] [14] [24] are particularly good at providing
an accessible introduction into this protocol. In short, zk-
SNARKs operate by representing computation as a sequence
of constrained variables. This is then transformed to polyno-
mials. With the addition of some hiding techniques and using
the witness to create a modified set of polynomials, we can
map them to pairing-friendly groups. A verifier simply needs
to evaluate some pairing functions to check a proof. Infor-
mally, ZK-SNARK is able to represent any computation that
can be verified quickly, and this allows us to express complex
access criteria [24]. There are multiple ways to implement
ZK-SNARKs, and this paper considers the Groth16 imple-
mentation. This is a general-purpose ZK-SNARK which en-
ables constant size proof and fast verifier time but requires a
circuit-specific trusted setup for the pre-processing phase [9].
For circuit of arithmetic operations, a Groth16 proof consists
of 2 elements in G1 and 1 element in G2 which is an improve-
ment from previous implementation such as the Pinocchio ZK-
SNARK which contains 7 elements in G1 and 1 element in G2

[9]. Verification in Groth16 only requires 3 pairings instead of
the 12 used in Pinocchio and comes with a shorter CRS [9]. In
addition to the appealing performance metrics, Groth16 also
allows linkage proofs [19]. Linkage proofs show that a private
set of Groth16 proofs share some subset of hidden public in-
puts. Verifying a linkage proof does not reveal the Groth16
proof constituents or even the public inputs involved. Link-
age proofs are key in constructing the ZKP system we are
interested in [19].

zk-Creds is a ”flexible, issuer-agnostic anonymous creden-
tial toolkit for complex identity statements” [19]. The system
relies on Groth16 ZK-SNARKs to prove these identity state-
ments, and linkage proofs of Groth16 allows zk-Creds to work
with different forms of credentials as long as they have some
public credential. This enables post-deployment composition
of credentials, and new access criteria. The assumption made
by zk-Creds is that there is a list of issued credentials that
is either maintained by a trusted party or some decentralized
system [19], which is the standard assumption made by VCs.

zk-Creds allows three sets of functionalities: issue, show
and verify, and revoke [19]. Unlike RSS and VCs in general,
zk-Creds credentials does not rely on signatures but rather
proof of being in an issued set. In the issuance process, a
user requests the issuer that a credential should be issued by

3

meeting some predetermined requirement. Once the creden-
tial is placed on the list of issued credential, the user can use
it to prove that some access criteria is met to other parties.
Using a credential provides a membership proof of the creden-
tial being on the list of issued credentials, and a proof that
committed attributes of credentials meets the access criteria.
A credential can be revoked simply by removing it from the
list of issued credentials. In [19] notes that there are multiple
ways to demonstrate set membership, and uses Merkle forests
as a new approach to gain a large reduction in proof genera-
tion time but a slight increase in verification time and witness
size. An examination of alternative approaches can be found
in [12].

Groth16 linkage proofs can be combined with membership
proof (which shows that an element belongs to a set) and mul-
tiple access proofs (which shows that some criteria is fulfilled
by a prover) to create Blind Groth16 [19]. Blind Groth16 al-
lows us to reuse membership proofs in multiple showings and
still maintain privacy [19]. This also allows an easy compo-
sition of access criteria to prevent determining in advance all
the circuits that verifiers will support, prevent the generation
of circuit parameters for every combination of access criteria,
and avoid dynamical generation of circuit parameters for ac-
cess criteria as they are needed. Consequently, Blind Groth16s
allows one to show that various Groth16 proofs are made based
on the same credential without revealing the credential. A full
exploration of zk-Creds can be found in [19].

3 Concrete Performance Metrics

Previous work on RSS have generally examined its perfor-
mance with respect to the number of arithmetic operations re-
quired, or from a theoretical computational complexity. How-
ever, to better assess their suitability for VCs, we would need
concrete metrics such as run-time and size in terms of millisec-
ond and bytes respectively. Thus, we have gathered results on
both RSS and zk-Creds for VCs when implemented using the
Rust programming language.

The VC we considered is compliant with W3C standards
which can be found in [7]. This sample VC details a user’s
personal information such as their name, date of birth, and ad-
dress (which consists of street name, postcode, and country).
For RSS, we want to create a redacted VC which shows that
a user resides in a certain country and nothing else. Thus, all
the fields but the name the country have been redacted which
should give us a good illustration of near-worst-case perfor-
mance as users redact leave only two fields unredacted. The
code for our implementation can be found on [25]. As this is
merely a proof-of-concept, the implementation would be un-
suited for immediate deployment in a VC system, and only
unit testing has been conducted to ensure that components
run as intended.

We collect the speed and size of the RSS algorithm dis-
cussed in the previous section. We have 4 algorithms to mea-
sure (generating keys, initial signing, deriving a redaction sig-
nature, and verifying signatures), gathering the size of the
signature, keys, and verification elements, and the results are
presented below, rounded to 2 significant figures:

Category Runtime (ms) Size (bytes)

public key 588.22 816
private key 7.01 112
signature 545 1344

derived signature 824.84 1344
verifying signature 310.77 32

For zk-Creds, we use the performance results gathered by
[19]. Their implementation focused on converting an exist-
ing credential into zero knowledge proofs and demonstrating
a range of access criteria such as expiry, late limiting, and
clone resistance. The results below gives prover-side optimized
worst-case cost where the cost of showing a credential is in a
membership list is included:

Client-Opt Runtime (ms) Proof Size (bytes)

Simple Possession 784 744
Expiry 875 1064

Linkable Show 879 1064
Rate Limiting 895 1064

Clone Resistance 916 1064
VerifyShow 6 1064

The following results are after excluding the cost of the
membership list but still prover-side optimized:

Client-Opt Runtime (ms) Proof Size (bytes)

Simple Possession 5 744
Expiry 98 1064

Linkable Show 104 1064
Rate Limiting 117 1064

Clone Resistance 139 1064
VerifyShow 6 1064

Lastly, [19] has results where computations are optimized
for the verifier. This covers the scenario where a SNARK
proof is not reused, and a batch verification is included which
indicates the throughout of verifying a set of 100 proofs. All
verification numbers are single-threaded and concurrent pro-
cessing is possible:

Server-Opt Runtime (ms) Proof Size (bytes)

Simple Possession 699 744
Expiry 796 1064

Linkable Show 837 1064
Rate Limiting 817 1064

Clone Resistance 812 1064
VerifyShow 1.5 192
Verify Batch 1.8 verifs 192

4 Evaluation
Having gathered concrete metrics from RSS and zk-Creds, we
can discuss the two schemes in greater depth for VC applica-
tions.

4.1 RSS for VC

The RSS construction we considered possesses several attrac-
tive properties in theory. Namely, a constant signature size,

4

flexible attribute redaction for selective disclosure, no require-
ments for a trusted set-up, and possible schemes built on top
of it. However, it has some key drawbacks. From the re-
sults gathered, the constant signature and private key size of
1344 bytes and 112 bytes respectively are substantially big-
ger than other signature schemes used in VCs. For instance,
the pairing-based BBS+ signature scheme that is in the final
stages of standardization has a signature size of 112 bytes and
a private key size of 32 bytes alongside a 96 byte public key
when instantiated on the widely used BLS12-381 parameters
[28] [3]. This is a far more attractive in terms of size, and
BBS+ signatures provide proof-of-knowledge schemes that
also enables selective disclosure of messages similar to ZK-
SNARKs. Given our implementation scenario that considered
redacting all but one’s name and country on a VC, the BBS+
proof would have a size of 464 bytes. Again, in terms of size,
this is a significantly more attractive result than RSS by of-
fering half the size of a derived signature.

Regarding the run-time, most of the RSS algorithms are
much slower than BBS+. For instance, generating keys takes
151.81ms for BBS+ but 588.22ms for RSS public keys. RSS
key generation has the potential to run much slower too, given
that public keys scale linearly with the size of a message. In
addition, signing using the BBS+ scheme takes only 57.02ms
which is almost 10x faster than the RSS signature and almost
15x faster than generating a derived signature. The only su-
perior performance for RSS is in the verification, where RSS
takes 310.77ms to verify whilst verifying a BBS+ proof takes
3478.74ms. This is a roughly 10x difference, but in absolute
terms the slowness of BBS+ proof verification will be much
more noticeable to users than the comparative difference in
BBS+ and RSS signing. The issue of the BBS+ proof ver-
ification is also more significant when we consider that the
BBS+ proof verification has a linear scaling. Considering a
VC with significantly more attributes than our implementa-
tion, going beyond 3.5 seconds to verify may become a barrier
for adoption.

Though the public key of RSS will scale with the length
of the message, it is arguable that given the rare frequency of
generating keys this is an acceptable one-off cost unlike the
linear growth of a BBS+ proof which has to be used every
single time one wants to perform selective disclosure. Thus, if
speed is a concern the verification time of RSS may make it
preferable than adopting BBS+ signatures.

However, there are other considerations outside of the con-
crete metrics from RSS. On a general level, RSS offers cre-
dential holders a level of flexibility with what information to
disclose. Returning to the canonical example of showing that
one is above 18 years old, an individual may not want to show
any other fields of a VC except for their age. However, other
users may have less concerns and be comfortable with dis-
playing their whole or partial VC. RSS allows users to chose
their own level of privacy, and this will impact the run-time
to generate a derived signature. RSS also does not require a
trusted set-up as used in ZK-SNARK proofs. Of course, trust
is placed in the issuer of a credential and is a form of central-
ization, but this form of trust is also placed in a ZK-SNARK
anyway where one has to assume that a digital credential is
generated by a trustworthy issuer. The lack of a trusted set-
up for an RSS scheme means that there is no risk of a forged

proof (however small) due to kept toxic waste of a CRS, and
a forgery attempt of a redacted signature is thwarted by the
security properties of an RSS construction as seen in [26].

Lastly, RSS can also be used as a building block for more
advanced cryptographic schemes beneficial to VCs. [26] used
the RSS implementation considered on this paper to create a
group signature (which permits members of a group of anony-
mously sign a message which represents the group) with a re-
vocation mechanism that enables users to be removed from a
group. One of the uses of this feature is for public transport,
specifically to implement an anonymous transport subscrip-
tion pass where users are able to take an unlimited number
of trips within a fixed period. Given that VC applications
may include that of government registries [23], an anonymous
travel pass within a subscription model for public transport
would be a perfect fit for VC functionality.

However, there are some more drawbacks for RSS. In ad-
dition to the slower and bigger key generation and signature
metrics compared to BBS+, validating an RSS requires re-
ceivers to perform their own computation on top of the RSS
scheme. Though RSS lends itself to convenient constructions
as highlighted above in the case of an anonymous transport
subscription, it is not as flexible as zk-Creds as we will see in
the following sections. Though the public key linear growth
is not ideal, it is an improvement over previous quadratic key
sizes of the RSS [1] and again keys do not have to be frequently
generated which may be more efficient than the linear growth
of BBS+ proof verification scheme. With execution times run-
ning at 800ms in the worst case, this is still within the realm
of use-ability for DID and VC application. The format of a
W3C VC is relatively small with around 6 or so attributes,
and unless substantially more attributes would be included it
would not drastically impact performance or user experience.

4.2 zk-Creds for VC

On the other hand, zk-Creds possess desirable properties for
VCs unavailable to RSS. The Groth16 ZK-SNARK has one
of the smallest proof size and fastest verification time in ZKP
literature with a competitive proof generation [19]. Indeed,
based on the results from [19], zk-Creds runs with a simi-
lar speed when we work with generating a proof alongside its
membership witness compared to RSS. For instance, access
criteria shown above range from 784ms to 916ms when work-
ing with a client-side optimization. In fact, it has a slightly
better performance when we work with a server-optimized con-
figuration (though a difference of 100ms would hardly be no-
ticeable in real-life applications). Verifying proofs takes any-
where from 1.8ms to 6ms, is a huge performance improvement
over RSS and BBS+. With proof sizes ranging anywhere from
192 bytes to 1064 byes, its clear that the speed and size of zk-
Creds is superior when compared to RSS and BBS+. Bear
in mind that these results already pass the access criteria
check, whereas in RSS a verifier would still need to extract
the information from the VC and perform the access check
after verifying the redacted signature. The use of sub-circuits
called gadgets also ensures that verifiers can create separate
proofs that allow pre-computation to further improve speed.
Gadgets also allows the representation of more complex access
criteria such as session-binding and rate limiting which pro-

5

vides a more fine-grained access control than what is possible
with RSS, so there is room for optimization to derive even
better performance metrics over RSS .

In addition to performance, Groth16 linkage proofs is an
extremely valuable mechanism which allows proofs to show
that a hidden collection of Groth16 proofs share hidden pub-
lic inputs. Given the VC assumption of having a publicly
verifiable identity, one could chain different credentials (for in-
stance, a digital driving license, digital work visa, digital mar-
riage certificate) the same way as physical identity documents
for an individual all refer to the same person. Possible exten-
sion of linkage proofs can be applied internationally between
countries to acknowledge travel documents issued by another
authority. zk-Creds has shown that it is possible to utilize ex-
isting government-issued credentials such as an NFC-enabled
passport into a digital credential which is hugely beneficial
in easing adoption. This would not be possible with RSS, as
different credentials would have to be redacted separately and
sent for verification or verifiers must be re-configured to accept
different verification methods. However, the main barrier of
zk-Creds multiple-credential linkage is the trust assigned by
authorities to credentials issued by other parties. This is a
largely political and social issue that lies outside the scope of
this paper, but is worth mentioning in the context of inter-
systems interactions.

The use of Groth16, in addition to the linkage proofs that
enables interoperability, also provides other desirable proper-
ties. Like the RSS construction considered, Groth16 allows
re-randomization with a weak form of simulation extractabil-
ity. This guarantees that even if a malicious party has seen
some proofs before, it cannot prove a new statement without
knowing the witness. Given how frequent proofs may be re-
quired for decentralized identities, some form of information
leak must be anticipated. With Groth16, should an adver-
sary see old proofs they would still be unable to create forged
proofs without the witness. This is a desirable feature to pre-
vent the ’capture’ of information which is possible in RSS as
their verification still involves information extraction from a
given VC.

Given how crucial digital identities are, it is not surprising
that the biggest drawback of zk-Creds is the trusted set-up
procedure, followed by the practical integration of different
credentials to take advantage of the linkage proofs enabled
by Groth16. As mentioned, every application using Groth16
must have an initial trusted set-up phase which would need to
be conducted after issuing a VC for every user. In addition to
keeping the toxic waste of a CRS, any small errors in the whole
protocol as demonstrated by an incorrect input aliasing can
lead to falsifiable proofs which would be fatal to the implemen-
tation of a trust-worthy digital identity system. For instance,
security audit company Beosin discovered that the zk-SNARK
project Semaphore where the uin256 type represented a larger
range of values than what is accepted in the arithmetic cir-
cuit, leading to proofs that can be used more than once and
therefore enabled double spending [Beosin]. There have been
some notable improvements to the toxic waste to address these
concerns. [27] developed a distributed trusted set-up that is
secure as long as at least one of the parties have honestly
deleted their toxic waste. Though [27] notes that there is an
issue of robustness as all parties must be fixed before starting

the CRS and must be active throughout the whole trusted
set-up phase, this may not be a significant barrier for a VC
depending on the implementation and connectivity. Further
improvements such as [31] was able to avoid using the random
beacon model to further simplify the process. Note that not all
of the trusted set-up improvements are ready for deployment
with some being in the theory phase so a more nuanced dis-
cussion will be needed. The issue of fatal errors in the set-up
phase is a more practical one, and the best mitigation would
be an open-source approach with consistent audits. However,
it is possible to remove the trusted set-up entirely by replacing
the ZK-SNARK component of zk-Creds with another proto-
col such as ZK-STARK which does away with this phase. The
trade-off would be a significantly slower performance which
may inhibit the system.

The last drawback is that of witness generation. As men-
tioned in previous sections, zk-Creds uses witnesses to gener-
ate proofs by the prover. Witnesses in zk-Creds are specifically
based on the credential issued list. However, the witness must
always be generated from the most recent list of issued cre-
dential to ensure that a credential is still valid at the time of
generating a proof. Though this does not seem to be prob-
lematic in theory, in practice it may make operations such as
pre-processing difficult if there is a high volume of credentials
being issued at a time from multiple issuers which requires
the issuer list to be frequently updated. Users with multiple
credentials would have to keep a witness per issuer on top of
this. Though [19] proposes some form of batching addition to
potentially mitigate this issue, it still makes the capability to
pre-compute proofs cumbersome. In addition, there are also
privacy considerations for low-update and low-use systems.
Generating a new witness may be matched to a credential
as generating a witness requires showing a credential. This
may be matched to a given proof if there is only a low num-
ber of witness generation and participants. Again, batching
approach may mitigate this, but would be a context-specific
deployment. Realistically, given the context of decentralized
ID systems, this issue may be less applicable due to the target
volume of users and frequency of anonymous disclosure. That
being said, without the ability to pre-compute witnesses, it
may not be the worst aspect as performance indicates zk-Cred
proof generation will run similarly to RSS.

4.3 Verdict

Having considered the merits and drawbacks of each approach,
we can conclude its suitability for decentralized identities.
Clearly, there are aspects where zk-Creds provide advantage
that RSS cannot replicate, and vice versa. In the case of zk-
Creds, it is able to provide a much higher level of privacy as
verifiers will never have to see the credential itself, allow more
complex access criteria, and a superior performance compared
to RSS. However, the issues of a trusted-setup and witness
generation are factors that deter adoption. On the other hand,
RSS has runs on a competitive speed and size when compared
holistically against similar signatures with a customizable level
of user privacy without the aforementioned issues facing zk-
Creds. Yet, it cannot match zk-Creds in terms of the level
privacy available and leaves the burden of information extrac-
tion for access criteria checks to the verifier.

6

Having gathered concrete performance metrics in addition
to considering the cryptographic features, we conclude that
RSS is a much more convenient implementation for decentral-
ized ID systems that should be adopted first. This does not
mean that zk-Creds should be ruled out entirely. There are
good use cases for them, but the current drawbacks indicate
that this protocol is best adopted at a later stage. RSS is a
more attractive scheme to adopt at an earlier stage of a de-
centralized ID system in part due to its ease to implement but
also being able to offer an acceptable level of privacy. Allow-
ing users the ability to selectively redact credential attributes
aligns with the self-sovereign concept of decentralized identity
by empowering users to select the level of privacy that they are
comfortable with. This is still a partial solution for privacy,
which is why in the following section we discuss the benefits of
zk-Creds. But as a starting point, RSS performance metrics
already compares well against signature schemes used in the
decentralized identity space so we would not be looking at a
radically different performance metrics. The RSS drawback
of attribute verification needing to be computed by a verifier
outside of the signature is also not necessarily an issue. At an
earlier stage of development, it is likely that simpler access cri-
teria will be more applicable such as proving one’s age, one’s
country, etc. The computation cost imposed on such checks
(range checks, string matching) is not costly and would be
expected to add only a negligible overhead on the whole pro-
cedure. The RSS protocol can also be used to construct a
mildly complex limited subscription credential as seen in [26],
so more advanced uses of digital credentials is entirely possible
with only RSS.

However, the benefits of RSS can only extend so far. At
a later or more mature stage of development, zk-Creds would
be the more appropriate system. zk-Creds offers much bet-
ter privacy by using proofs to avoid verifiers from seeing the
actual credential itself. There is no need for credential hold-
ers to select which part of a VC they would like to redact, as
the verifiers will never see any part of it in the first place but
be provided with a verifiable proof that their access criteria
is met. This is a much more complicated protocols (espe-
cially through the use of ZK-SNARKS which heavily involves
pairing-based cryptography, arithmetic circuits, and homo-
morphic mappings) that will require much more awareness
between stakeholders instead of the simpler concept RSS pro-
vides before adoption. Avoiding the implementation issues
that trusted set-ups are liable to stringent checks will also
take time, and a feedback process must be more intensive due
to the possible cost of falsifiable proofs whereas RSS security
rests on simpler digital signatures.

As discussed in the previous section, the risk-prone trusted
set-up mechanism can be made more secure through a dis-
tributed variant [27]. Though some balance needs to be struck
with regards to the number of participants in the interest of
performance, a system that starts out with zk-Creds as the
main verification protocol but few initial participants is at a
higher risk of toxic waste not being deleted by any parties than
one with much more participants involved at the trusted set-
up phase happening at a later stage. A later stage adoption of
zk-Creds would also be friendlier for witness generation. Given
the expected increase in the number of participants, witness-
batching is more feasible to preserve user anonymity, which is

a possible privacy leak as mentioned in the previous section
when there is not enough participants to obscure the witness
request and proof verification processes. One may also be less
liable to constant updates on the issued list of credentials de-
pending on usage. For instance, a digital voter ID may see a
smaller stream of users registering at a later stage instead of
a persistent addition at the first stages of using this system.
Some form of registration batching would also be possible de-
pending on the exact numbers, which would bring down the
number of updates to a credential list making witness updates
less frequent.

Adopting zk-Creds at a later stage is possible due to the
Groth16 linkage proofs. Without this feature, one would have
to start from scratch again when adopting a new protocol for
verification which is a notable push-factor for improving iden-
tity systems. Linkage proofs, as demonstrated in [19] using
US NFC-enabled passports, allows parties to build on top of
existing identity infrastructures without changing how they
operate. It is therefore possible to initially adopt RSS as the
basis for a decentralized ID verification but later transition
to zk-Creds as parties look into working with different creden-
tials and attributes that were not initially a part of the system
with no material cost to modifying the system. This is not a
feature that is possible with RSS, where verifiers would have
to change their verification protocol to accept other verifica-
tion methods used by different credentials. Crucially, linkage
proofs also preserve privacy of other credentials and attributes,
and would go a long way in enabling interoperability as other
issuers would mitigate privacy concerns as public inputs can
be hidden when forming proofs.

In short, given the performance metrics and cryptographic
features of both protocols, we conclude that RSS is more ap-
propriate to utilize during the earlier stages of an identity
system whilst zk-Creds is better suited for a later-stage de-
ployment which can be implemented without any changes to
the initial system but rather to build on top of it. Addi-
tionally, a later-stage deployment of zk-Creds mitigates some
issues regarding trusted set-ups and witness generation due
to the number of participants and batching techniques avail-
able respectively whilst RSS provides user-enabled privacy at
a competitive performance metric that can be implemented
much earlier in decentralized identity systems without expo-
sure to risks that zk-Creds are vulnerable to at an earlier stage.

5 Conclusion
This work has examined on two privacy-preserving protocols
for verification in decentralized identity systems. RSS allows
users to redact attributes of a credential, which enables users
to select which attributes they would like to present to a veri-
fier. zk-Creds is a protocol that uses ZK-SNARKS to present
verifiers with proofs that shows an access criteria is met but
without having to disclose their credential. Though both uti-
lize pairing-based cryptography, they offer different benefits
and drawbacks for decentralized identity systems.

Having implemented these two protocols on a sample VC,
we find that RSS offers competitive performance in terms of
speed and size when compared against other signature schemes
currently being standardized for VCs. In addition, RSS em-
powers users by allowing them the flexibility to choose what
level of privacy they would be comfortable with and can be

7

used to build anonymous subscription-based access with ap-
plications in public transport. However, RSS still moves the
burden of verifying access criteria to the verifier and would
have difficulties when considering interoperability. We argue
that these considerations makes RSS a good candidate for an
early-stage ID system. It is able to offer user privacy, but
the expected simpler access criteria would not impinge perfor-
mance and interoperability considerations may done at a later
stage.

Here is where zk-Creds come into play. Through ZK-
SNARKs and linkage proofs, it is able to operate with different
credentials and does not compromise on privacy. Verifiers will
never see the actual credential of a user but can set complex
access criteria. In addition, zk-Creds does not need any sign-
ing mechanism as the verification relies on a witness based on
a path on a Merkle tree. There are concerns about the trusted
set-up requirement of zk-Creds and witness generation which
may accidentally leak a user’s identity. These factors make
zk-Creds better suited for a later-stage adoption where in-
teroperability, maximum privacy, and complex access-criteria
can be handled by the protocol. The issues of trusted set-
ups and witness generation are also partially mitigated with a
later-stage implementation as a distributed variant with more
participants lessens the risk of toxic waste being kept and less
frequent sign-ups can lead to batching to remove the need to
constantly update the witness. Thus, both techniques need
not exist in opposition, but would be synergistic when imple-
mented at different stages of a decentralized identity system.

Though our conclusion presents a cohesive application for
these two techniques, there are several areas of RSS and ZKPs
that merit future investigation. One direction of exploration
is to examine any post-quantum variants for the two tech-
niques. The US National Institute of Standards and Technol-
ogy (NIST) has recently wrapped up its first competition of
quantum-resistant cryptography. In this competition, lattice-
based and hash-based protocols have been selected but future
rounds are being conducted to expand the range of mathemat-
ical structures utilized by considering code-based cryptogra-
phy.

Currently, we know of a lattice-based and a hash-based
variant of the RSS [11] [10]. Even within these standards,
there are variants of the structure that can provide differences.
For instance, Learning with Errors is a popular hardness prob-
lem used to create lattice-based protocols. But, there are also
variants that constructs Learning with Error over a Ring and
a Module [8]. There are also other structures that may be
quantum-secure such as isogenies. Within ZK-SNARKS, there
is a lattice-based variant [30]. Again, it is worth investigat-
ing alternative constructions to ensure preparedness against
potential quantum-adversaries that may break the current se-
curity assumptions of RSS and ZK-SNARKs.

6 Acknowledgments

This work was supported, in whole or in part, by the Bill and
Melinda Gates Foundation [INV-001309]. Under the grant
conditions of the Foundation, a Creative Commons Attribu-
tion 4.0 Generic License has already been assigned to the Au-
thor Accepted Manuscript version that might arise from this
submission.

References
[1] Kai Samelin Arne Bilzhause Henrich C. Pohls. “Position

Paper: The Past, Present, and Future of Sanitizable and
Redactable Signatures”. In: International Conference on
Availability, Reliability and Security (2017).

[2] Joseph J. Atick. “Digital identity: The Essential Guide”.
In: (2013).

[3] BBS+ Implementation. https://github.com/mattrglobal/bbs-signatures.
Accessed: 2023-03-30.

[4] Zoltan Andras Lux Dirk Thatmann Sebastian Zickau
Felix Beierle. “Distributed-Ledger-based Authentica-
tion with Decentralized Identifiers and Verifiable Cre-
dentials”. In: 2nd Conference on Blockchain Research
and Applications for Innovative Networks and Services
(2020).

[5] J.L. Camp. “Digital Identity”. In: IEEE Technology and
Society 24 (2004).

[6] Olivier Sanders David Pointcheval. “Short Randomiz-
able Signatures”. In: The Cryptographers’ Track at the
RSA Conference (2016).

[7] Decentralized Identifiers (DIDs) v1.0. https://www.w3.org/TR/did-core/.
Accessed: 2023-03-30.

[8] Amit Deo. “Variants of LWE: Attacks, Reductions, and
a Construction”. In: Royal Holloway, University of Lon-
don PhD Thesis (2019).

[9] Jens Groth. “On the Size of Pairing-Based Non-
interactive Arguments”. In: Annual International Con-
ference on the Theory and Applications of Cryptographic
Techniques Advances in Cryptology – EUROCRYPT
2016 (2016), pp. 305–326.

[10] Fei Zhu Xun Yi Alsharif Abuadbba Junwei Lup Surya
Nepal Xinyi Huang. “Efficient Hash-Based Redactable
Signature for Smart Grid Applications”. In: Euro-
pean Symposium on Research in Computer Security 27
(2022).

[11] Yong Zhao Shaojun Yang Wei Wu Xinyi Huang. “A
Lattice-Based Redactable Signature Scheme using Cryp-
tographic Accumulators for Trees”. In: The Computer
Journal (2022).

[12] Justin Broaddus Anthony Skjellum Ilker Ozcelik Sai
Medury. “An Overview of Cryptographic Accumula-
tors”. In: Arxiv (2021).

[13] Chen Yan Ji Fang Cao Yan. “Centralized Identity Au-
thentication Research Based on Management Applica-
tion Platform”. In: International Conference on Infor-
mation Science and Engineering 1 (2009).

[14] Terrence Jo. “An Exploration of Zero-Knowledge Proofs
and zk-SNARKs”. In: University of Pennsylvania
(2019).

[15] Ravneet Kaur. “Digital Signature”. In: International
Conference on Computing Sciences (2012).

[16] Ali M Al-Khouri. “Digital identity: Transforming GCC
economies”. In: Innovation: Organization and Manage-
ment 16.2 (2013).

8

[17] Samia Bouzefrane Maryline Laurent. Digital Identity
Management. Elsevier, 2015. isbn: 9781785480041.

[18] Hartwig Mayer. “zk-SNARK explained: Basic Princi-
ples”. In: Coinfabrik (2017).

[19] Michael Rosenberg Jacob White Christina Garman Ian
Miers. “zk-creds: Flexible Anonymous Credentials from
zkSNARKs and Existing Identity Infrastructure”. In:
Security and Privacy 2023 IEEE Symposium on Secu-
rity and Privacy (SP) (2023), pp. 790–808.

[20] Bertjan Doose Naomi Ellemers Russell Speakers. “Self
and Social Identity”. In: Annual Review of Psychology
53 (2002), pp. 161–186.

[21] Anca Nitulescu. “zk-SNARKs: A Gentle Introduction”.
In: Ecole Normale Superieure (2020).

[22] Yair Oren Oded Goldreich. “Definitions and properties
of zero-knowledge proof systems”. In: Journal of Cryp-
tology 7 (1994), pp. 1–32.

[23] Khalifa Toumi Omar Dib. “Decentralized Identity Sys-
tems: Architecture, Challenges, Solutions and Future
Directions”. In: Annals of Emerging Technologies in
Computing 4.5 (2020).

[24] Maksym Petkus. “Why and How zk-SNARK Works”.
In: Arxiv (2019).

[25] RSS Code. https://github.com/alan-turing-institute/RSS/tree/new_rss-vc-signing.
Accessed: 2023-06-30.

[26] Olivier Sanders. “Improving Revocation for Group Sig-
nature with Redactable Signature”. In: IACR Inter-
national Conference on Public-Key Cryptography PKC
2021 (2021), pp. 301–330.

[27] Ian Miers Sean Bowe Ariel Gabizon. “Scalable Multi-
party Computation for zk-SNARK Parameters in the
Random Beacon Model”. In: IACR Cryptology (2017).

[28] The BBS Signature Scheme. https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html.
Accessed: 2023-03-30.

[29] The Zero Knowledge Blog. https://www.zeroknowledgeblog.com.
Accessed: 2023-03-30.

[30] Martin R. Albrecht Valerio Cini Russell W. F. Lai
Giulio Malavolta Sri AravindaKrishnan Thyagarajan.
“Lattice-Based SNARKs: Publicly Verifiable, Prepro-
cessing, and Recursively Composable”. In: Annual Inter-
national Cryptology Conference Advances in Cryptology
– CRYPTO 2022 (2022), pp. 102–132.

[31] Markulf Kohlweiss Mary Maller Janno Siim Mikhail
Volkhov. “Snarky Ceremonies”. In: International Con-
ference on the Theory and Application of Cryptology and
Information Security Advances in Cryptology – ASI-
ACRYPT 2021 (2021), pp. 98–127.

9

