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Abstract

All-but-one Vector Commitments (AVCs) allow a committed vector to
be verified by randomly opening all but one of the committed values. Typ-
ically, AVCs are instantiated using Goldwasser-Goldreich-Micali (GGM)
trees. Generating these trees comprises a significant computational cost
for AVCs due to a large number of hash function calls. Recently, cor-
related GGM (cGGM) trees were proposed to halve the number of hash
calls and Batched AVCs (BAVCs) using one large GGM tree were inte-
grated to FAEST to form the FAEST version 2 signature scheme, which
improves efficiency and reduces the signature size. However, further opti-
mizations on BAVC schemes remain possible. Inspired by the large-GGM
based BAVC and the cGGM tree, this paper proposes BACON, a BAVC
with aborts scheme by leveraging a large cGGM tree. BACON executes
multiple instances of AVC in a single batch and enables an abort mech-
anism to probabilistically reduce the commitment size. We prove that
BACON is secure under the ideal cipher model and the random oracle
model. We also discuss the possible application of the proposed BACON,
i.e., FAEST version 2. Furthermore, because the number of hash calls in
a large cGGM tree is halved compared with that used in a large GGM
tree, theoretically, our BACON is more efficient than the state-of-the-art
BAVC scheme.

1 Introduction
Zero-knowledge proofs (ZKPs) allow a prover to convince a verifier that a state-
ment is true, and the verifier will learn nothing beyond the validity of the
statement. The Multi-party Computation-in-the-Head (MPCitH) paradigm [35]
is a popular method to create post-quantum digital signatures using a non-
interactive zero-knowledge (NIZK) proof, which proves that a signer knows a
secret witness to the output of a function. MPCitH-style signatures can be
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very efficient for small to medium-sized circuits and have been proposed as can-
didates for the NIST competition on post-quantum signatures [12, 21, 22, 36].
However, one drawback of the MPCitH-style signature is the proof size is linear
with the size of the underlying circuit which renders this approach inefficient
for large-sized circuits.

In 2018, Boyle et al. [15] proposed a new ZKP framework that makes use
of Vector Oblivious Linear Evaluation (VOLE) correlations to create a commit-
and-prove ZK protocol. Recently, several interactive ZK protocols [11, 13, 18,
24–26,30,39–42,44–46] have been proposed, which use subfield VOLE (sVOLE)
correlations. We will refer to these protocols as VOLE-ZK, which provide fast
end-to-end runtimes and are scalable for large circuits compared to MPCitH-
based ZK proofs. However, the aforementioned VOLE-based ZK protocols are
restricted to a designated-verifier setting1. To overcome this restriction, in 2023,
Baum et al. [9] proposed the VOLE-in-the-Head (VOLEitH) enabled VOLE-
based ZK proofs to be publicly verifiable. The VOLEitH-style signature can
be instantiated using AES as the one-way function. This creates the FAEST
signature scheme, which is a second-round candidate of the NIST additional
post-quantum signatures competition.

A key building block in both MPCitH and VOLEitH is the All-but-one Vec-
tor Commitment (AVC). Informally, an AVC scheme consists of four PPT algo-
rithms, a Setup algorithm which establishes the parameters, a Commit algorithm
which binds a hidden vector of values to commitment values, an Open algorithm
which randomly opens (i.e., outputs) all but one of the previously committed
values and a Verify algorithm which ensures that the committed values and the
hidden values are consistent.

1.1 Related work
In current instantiations of AVC schemes, an initial seed acting as the root of
the Goldreich-Goldwasser-Micali (GGM) tree [31] is extended to generate a set
of pseudorandom numbers by using a length-doubling pseudorandom generator
(PRG) recursively. Revealing all but one leaf allows verification of the commit-
ments but retains the secrecy of the prover’s witness. However, this construction
requires a logarithmic number of tree nodes to be sent to the verifier. Guo et
al. [33] replaced the length-doubling PRG with the Davies-Meyer circular cor-
relation robust (CCR) hash function [43] and proposed a new tree structure,
called a correlated GGM (cGGM) tree. In a cGGM tree, the left child node is
the hash output of the parent node while the right child node is computed by
XORing the parent node and the left child node. Then the sum of all nodes in
one layer is a constant value. The cGGM tree can reduce the number of hash
calls by half compared with the GGM tree, therefore this tree is also referred

1In a designated-verifier setting, a specified party, i.e., the “designated verifier”, is intro-
duced to prevent the verifier from turning around and convincing others that they have the
secret. The proof is constructed in such a way that only the designated verifier can verify the
proof, and no one else can. This provides stronger privacy guarantees, as the prover can be
assured that only the intended verifier can learn anything about the secret.



to as a “half tree”. To be compatible with the sVOLE approach [16, 40], whose
security relies on the pseudorandomness of leaf nodes, the authors use the PRG
when generating the leaf layer (to break down the correlation of the nodes in
the leaf layer). This new GGM tree is called the pseudorandom cGGM tree
(pcGGM).

Bui et al. [19] applied a single cGGM tree to construct an AVC scheme
and broke the correlation using the PRG (the same method to generate the leaf
nodes in a GGM/pcGGM tree), when generating the messages and commitments
from the leaf nodes. Furthermore, they also constructed an All-but-τ Vector
Commitment (AVC) scheme by running τ cGGM trees in parallel. This all-but-
τ vector commitment scheme meets the notion of Batched All-but-one Vector
Commitments (BAVC) proposed in [8]. In [8], Baum et al. firstly proposed the
notion of BAVC formally. Instead of generating a forest of τ trees in parallel,
they made use of a big GGM tree that can be considered as τ small GGM
trees connected together to construct a BAVC with aborts mechanism scheme.
Opening all but τ leaves of the big GGM tree is more efficient than opening all
but one leaf node in each of the τ small GGM trees in parallel. Because with
high probability, some authentication paths in the big GGM tree will merge.
This can reduce the number of internal nodes to be opened. Moreover, they
mapped entries of the individual vector commitments to the leaves of the tree
in an interleaved way. To prevent certain variability in the signature size due
to choices of opening nodes, they set a threshold for the number of internal
nodes to be opened; and abort the opening stage if the number of opened nodes
exceeds the threshold. They implemented the FAEST scheme instantiated with
their BAVC with aborts scheme. The results show that their improved FAEST
is more efficient than the original FAEST. Further, they integrated the large
GGM tree-based BAVC scheme [8] into FAEST to form the FAEST version
2 [10], released by NIST. Very recently, the FAEST team’s new work eplaced
the hash function calls and revisited the evaluation of the AES block cipher to
achieve improvements on both security and practical efficiency [7], which was
just accepted by CRYPTO 2025 and the full paper is not accessible at present.
However, the CCR hash construction [32] can only meet the 128-bit security
when it is constructed by AES. When the security level is 192 or 256 bits, they
applied Rijndael algorithm to construct CCR hash functions. After that, Cui
et al. [20] proposed a new tweaked CCR hash algorithm constructed by using
a standard AES algorithm, which can meet all three security levels, i.e., 128,
192, and 256 bits. Moreover, they also presented a single cGGM tree-based
AVC scheme based on a non-tweaked CCR hash function, which is a simplified
version of the proposed tweaked CCR hash [20].

Based on current literature, on the one hand, cGGM tree is the most efficient
tree compared to the GGM tree and pcGGM tree. On the other hand, using one
big tree is better than using multiple small trees in parallel to construct BAVC
schemes. Therefore, even using the state-of-the-art, i.e., a big GGM tree, to
construct BAVC schemes is not enough. There is still room for improving the
performance of BAVC schemes by examining efficient tree structures in theory.

Except the efficiency problem in GGM/cGGM tree-based vector commit-



ment schemes, there has been a line of research on the use of salts in GGM/cGGM
to makes these vector commitment schemes against collision attack. This mainly
originated after Dinur and Nadler [23] introduced the so-called multi-target at-
tack on Picnic: they showed that after querying 2λ/2 (λ is the security level)
signatures, an adversary is likely to find two signatures having the same master
seed, which eventually leads to recovering the signing key. A general approach
to mitigating this attack is to apply a 2λ-bit salt during signature generation, as
in Picnic [47] and other MPC-in-the-Head signatures, including BBQ [21], Ban-
quet [12], SDitH [3], MIRA [5], MiRitH [2], MQOM [28], PERK [1], Ryde [6],
and Biscuit [14]. However, the application of salt has taken diverse forms. For
instance, in [27], the signature description is based on a tree-based fashion using
the master seed and the salt. When they implemented the scheme, they lever-
aged the AES in counter (CTR) mode. [12] and [4] suggested applying the salt
to the leaves of the trees. Later, however, [17] showed that this approach fails
to prevent the multi-target attack, and proposed using a salt at every node as
input to the PRG, where the salt is derived from a global salt. In [37], Kim et
al. also made use of a global salt in the generation of every right child node in
the cGGM tree and introduced the concept of vector semi-commitment, which
relaxes the binding property but does not address the use of a large cGGM tree
to improve efficiency.

Therefore, the question remains if we can propose a more efficient tree struc-
ture to construct BAVC schemes while being against the multi-target attack si-
multaneously or not.

1.2 Our contributions
In this paper, to improve the efficiency, we propose one big cGGM tree to
construct a new BAVC with aborts scheme called BACON, which is more
efficient than the state-of-the-art BAVC with aborts scheme [8]. In short, a
prover generates one big cGGM tree with sufficient leaves to be used for multiple
AVCs. A verifier will provide a challenge index to reveal all but one value
in each AVC. Then a prover can send the minimum number of cGGM tree
nodes to construct an authentication path for verification. The abort mechanism
allows the prover to request a new challenge index if the number of tree nodes
exceeds a threshold at a small computational cost. After receiving a set of
opened cGGM nodes, the verifier recomputes the partial cGGM tree recursively.
Finally, the verifier checks whether the computed commitment matches the
given commitment. Choosing the cGGM tree significantly reduces the cost of
tree generation–specifically, given a parent node, generating two child nodes
requires only a single invocation of the underlying hash function. Furthermore,
to resist collision attacks, we apply a iv value as a master salt to internal nodes
of the cGGM tree. Moreover, we use AES in CTR mode, which allows the salt
to be varied easily using a counter. Our contributions are as follows:

1. We propose a new big cGGM tree to construct a new BAVC scheme, called
BACON. Moreover, for notation convenience, we make use of state-of-the-



art non-tweaked CCR hash function from [20] constructed using only AES
to meet all security levels.

2. We provide formal security proofs for our scheme, BACON, under the ideal
cipher model and random oracle model.

3. We discuss the application of our BACON to FAEST/FAEST version 2/ [7].

4. We compare our BACON with the large GGM tree-based BAVC with aborts
scheme [8] in theory and show our BACON is more efficient.

1.3 Paper organization.
We introduce preliminaries in Section 2. In Section 3, we define the syntax
of a BAVC with aborts scheme and introduce our proposed scheme BACON.
In Section 4.3, we prove our scheme BACON meets extractable binding and
hiding. Then we discuss the application of our proposed BACON in Section 5.
Furthermore, we compare BACON against the state-of-the-art BAVC scheme
to show theoretical improvements. We conclude our work in Section 7.

2 Preliminaries
This section introduces the GGM tree and its variants, alongside the concept of
BAVC with aborts.

2.1 GGM Tree and its variants
Cryptographic protocols such as MPCitH-style signatures require large amounts
of random inputs. Generating them directly can be computationally costly. A
more efficient approach is to start with an initial random value and expand
it to a large number of values that are computationally indistinguishable from
pseudorandom values. Generating pseudorandom values can be achieved by
creating a binary tree. A GGM tree is a type of binary tree, which expands
a random seed into a tree of pseudorandom values by recursively applying a
length-doubling Pseudorandom Generator PRG : {0, 1}λ → {0, 1}2λ to create a
pseudorandom left and right child node. However, the repeated calls to length-
doubling PRG for generating child nodes is computationally costly as one PRG
call consists of two hash calls.

A cGGM tree was proposed [33], which halves the computation cost by
XORing the left node and the parent node instead of a hash call to generate the
right child node. This is done using a CCR hash function H where the left node
is defined as H(parent) and the right node as left ⊕ parent = H(parent) ⊕
parent [33], parent denotes a parent node. For non-leaf and non-root nodes of
the tree, cGGM reduces the number of calls to hash functions by half compared
to GGM trees as only one hash function is needed in the CCR function. An



alternative to the cGGM tree is the pcGGM tree [33], which is similar to a
cGGM tree except for the last layer - the tree leaves are generated using the
same way in the GGM tree. In specific, the left leaf is defined as H(parent⊕ 0)
and the right leaf as H(parent⊕ 1).

2.2 Concept of BAVC with aborts
Here, we follow the formal notion of BAVC with aborts in [8]. Let λ be the
security parameter and τ ∈ N be the repetition parameter which determines
the number of AVCs required. Each AVC has a length Nα ∈ N, α ∈ [τ ].
A GGM-type tree has d ∈ N layers. The total number of leaves across all
AVCs is calculated as L = Σα∈[τ ]Nα. Define the challenge index set as I =

(i(1), ..., i(τ)) ⊂ [N1] × ... × [Nτ ]. A BAVC with aborts scheme is defined as
follows:

Definition 1 (BAVC with aborts) A BAVC with aborts scheme is denoted as
BAVC=(Setup,Commit,Open,Verify) (with message space M). Let E, E−1 be
the ideal cipher oracles.

• Setup(1λ)→ pp: This setup algorithm is run by the sender, taking the security
parameter λ as input and outputting public parameters pp, which is input to
all other algorithms.

• Commit(pp) → (com, decom,m = (m
(α)
1 , ...,m

(α)
Nα

)α∈[τ ]): This algorithm is
run by the sender. Given the public parameters pp as input and outputs
a commitment com with opening information decom for the message vector
m = (m

(α)
1 , ...,m

(α)
Nα

)α∈[τ ] ∈MN1+···+Nτ .

• Open(decom, I)→ decomI∨⊥: This algorithm is run by the sender. On input
an opening decom and the index vector I ⊂ [N1]×· · ·× [Nτ ] chosen randomly
by the sender, output ⊥ or an opening decomI for I.

• Verify(com, decomI , I) →
((

m
(α)
j

)
j∈[Nα]\{iα}

)
α∈[τ ]

∨ ⊥: This algorithm is

run by the receiver. Given a commitment com, an opening decomI , either
output all messages

(
m

(α)
j

)
j∈[Nα]\{iα}

(accept the opening) or ⊥ (reject the

opening).

3 BACON: a big cGGM-based BAVC with aborts
scheme

In this section, we introduce our big cGGM-based BAVC with aborts scheme in
detail. We name this scheme as BACON.

In our BACON, we adopt the cGGM tree structure [33] to propose a big
cGGM tree using the non-tweaked AES-based CCR hash version in [20]
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Figure 1: A mapping π in a the big cGGM tree. In this big cGGM tree, the
number of leaf nodes L =

∑τ
i=1 Ni. Every triangle can be considered as a small

cGGM tree in the head after the mapping π.

to achieve all security levels. Moreover, to be against the collision attack, we
add an iv value as a salt during the generation of the large cGGM generation.
Following the notations defined in section 2.2, let L be the number of leaf nodes,
d is the layer of the cGGM tree, so L = 2d. Let π : [0, 2d − 1]→ {(α, i)}1≤i≤Nα

as a bijective function mapping each leaf of the big cGGM tree to each AVC
(shown in Fig. 1), Topen be the threshold of the number of opened internal nodes,
HCCR : {0, 1}λ → {0, 1}λ be a CCR hash function defined in section 4.1, and
H : {0, 1}∗ → {0, 1}2λ be a collision-resistant hash function. BACON is shown
in Fig. 2 which consists of four algorithms, i.e., BACON.Setup, BACON.Commit,
BACON.Open and BACON.Verify. The BACON.Setup algorithm simply estab-
lishes the public parameters. In BACON.Commit, a single big cGGM tree with L
leaves is generated. All leaves are then interleaved into τ AVCs using the map-
ping π. A message and its corresponding commitment can be computed given
a mapped leaf sd(α)i using CCR hash functions. The prover can then compute
the final commitment value h using all com(α)

i , α ∈ [τ ]. In BACON.Open, com-
putes the decommitment with respect to the challenge set I, the decommitment
consists of the commitments of change set I and authentication path of hidden
nodes in I. The size of the opened nodes set |S|, is then compared against a
threshold Topen. If |S| ≤ Topen, the new decommitment is produced, else a
new challenge set is requested and the prover incurs a proof-of-work to do so.
BACON.Verify recomputes the cGGM leaves given the final commitment value,
decommitment and challenge set. Finally BACON.Verify compares the computed
commitment value with the given commitment value and decides whether the
commitment is valid or not.



• BACON.Setup(1λ, L)→ pp: Generate public parameters pp.

• BACON.Commit(sd, iv)→ (com, decom,m = (m
(α)
1 , ...,m

(α)
Nα

)α∈[τ ]):

1. Sample k ← {0, 1}λ. k10||k11 = PRG(sd, iv; 2λ), where ∆ = k10⊕k11
2. For i ∈ [2, d], j ∈

[
0, 2i−1

)
, compute ki2j = HCCR(k

i−1
j ), ki2j+1 =

ki2j ⊕ ki−1j ;

3. Deinterleave the leaves:{
sd(α)1 , . . . , sd(α)Nα

}
α∈[τ ]

π←
{
kd0 , · · · , kd2d−1

}
.

4. Compute m
(α)
i ← HCCR(sd

(α)
i ) and com(α)

i ← HCCR(sd
(α)
i ⊕

1)||HCCR(sd
(α)
i ⊕ 2), for α ∈ [τ ] and i ∈ [Nα].

5. Compute h(α) ← H
(
iv, com(α)

1 , . . . , com(α)
Nα

)
for α ∈ [τ ] and com-

pute h← H
(
iv, h(1), . . . , h(τ)

)
.

6. Output (com = h, decom = k, m = (m
(α)
1 , ...,m

(α)
Nα

)α∈[τ ]).

• BACON.Open(decom = k, I = (i(1), ..., i(τ)))→ decomI ∨ ⊥:

1. Recompute kij for i ∈ [2, d], j ∈ [0, 2i−1) from k as in Commit.

2. Let S =
{
kd0 , . . . , k

d
2d−1

}
. For each α ∈ [τ ], remove the associ-

ated path of nodes kπ−1(α,i(α)) from S.

3. For i from d − 1 to 0, j ∈ [0, 2i − 1], if ki2j ∈ S and ki2j+1 ∈ S,
replace both with ki−1j .

4. If |S| ≤ Topen, output decomI = ((com(α)

i(α))α∈[τ ], S), otherwise
output ⊥.

• BACON.Verify(com, decomI , I))→
((

m
(α)
j

)
j∈[Nα]\{i(α)}

)
α∈[τ ]

∨ ⊥:

1. Recompute sd(α)i from decomI , for each α ∈ [τ ] and i ̸= i(α)

using the available keys in S, and compute m
(α)
i ← HCCR(sd

(α)
i )

and com(α)
i ← HCCR(sd

(α)
i ⊕ 1)||HCCR(sd

(α)
i ⊕ 2).

2. Compute h(α) = H
(
iv, com(α)

1 , . . . , com(α)
Nα

)
for each α ∈ [τ ].

3. If h ̸= H
(
iv, h(1), . . . , h(τ)

)
output ⊥. Otherwise, output((

m
(α)
i

)
i∈[Nα]\{i(α)}

)
α∈[τ ]

.

Figure 2: The proposed BAVC with aborts scheme, BACON.



4 Security analysis
In this section, We prove that our scheme satisfies extractable binding. Intu-
itively, we leverage the extractable-binding security property of the HCCR proved
in [20] to prove that an adversary is probabilistically bounded in their ability to
win in the extractable-binding game in our scheme. For the hiding, the proof
relies on the CCR property of the HCCR proved in [20]. Further, we model the
HCCR as an ideal cipher oracle. Before presenting our security proof, let’s re-
call the definitions of the CCR and AES-based CCR hash function are given as
follows:

4.1 Circular Correlation Robustness
Circular Correlation Robustness (CCR) is a security notion first introduced for
circuit garbling with a free XOR optimization [38]. For this paper, we are
only concerned with a hash function that meets the CCR security requirement.
Informally, a function fR(x, b) = H(x⊕R)⊕ b ·R is CCR if it is pseudorandom
provided that x is never repeated. CCR hash functions can be constructed
from a fixed-key block cipher such as AES and a linear orthomorphism σ [20]
2. Formally:

Definition 2 (Circular Correlation Robustness [32]). Let HE: {0, 1}λ → {0, 1}λ,
be a function defined upon an ideal cipher E. For Γ ∈ {0, 1}λ, define OCCR

Γ (x, b) =

HE(x⊕ Γ)⊕ b · Γ. We prohibit the distinguisher from querying the same x with
both b = 0 and b = 1 to avoid the trivial attack. For a distinguisher D, we define
the following advantage AdvCCR

H

∣∣∣∣ Pr
Γ←{0,1}λ

[
DO

CCR
Γ (·),E(·,·),E−1(·,·) (1λ) = 1

]
− Pr

f←Fλ+1,λ

[
Df(·),E(·,·),E−1(·,·) (1λ) = 1

]∣∣∣∣
Where Fλ+1,λ denotes the set of all functions mapping (λ+ 1)-bit inputs to

λ-bit outputs. H is (qE , qC , ϵ)-circular correlation robust if for all D making at
most qE queries to E and E−1 and at most qC queries to the oracle we have
AdvCCR

H ≤ ϵ.

In this paper, we will use a CCR hash function constructed using AES expli-
cated in Fig. 3 to construct a binary tree whose leaves become message and
commitment outputs. Furthermore, we will make use of the extractable binding
property of the CCR hash, proved in the ideal cipher model [20], to argue our
proposed scheme BACON meets the security requirements.

2A mapping σ: G → G for an additive Abelian group G is a linear orthomorphism if (i): σ
is a permutation, (ii) σ(x+y) = σ(x)+σ(y) for any x, y ∈ G, and (iii) σ′(x) = σ(x)−x is also
a permutation. [32] presents two efficient instantiations of σ (with well-defined efficient σ−1,
σ′, and σ′−1): (i) if G is a field, σ(x) = c · x for some c ̸= 0, 1 ∈ G, and (ii) if G = {0, 1}λ,
σ(x) = σ(xL||xR) = (xL ⊕ xR)||xL where xL and xR are the left and right halves of x.



AES-based CCR Hash Function HCCR(1
λ, 1n, r) :

• If λ = 128,

1. Return AES-128([C0]128, σ(r))⊕ σ(r).

• If λ = 192,

1. Let rL ← left128(r) and rR ← right64(r).

2. Return AES192(rR||[C0]128, σ(rL))⊕ σ(rL)||
left64(AES192(rR||[C1]128, σ(rL))⊕ σ(rL)).

• If λ = 256,

1. Let rL ← left128(r) and rR ← right128(r).

2. Return AES256(rR||[C0]128, σ(rL))⊕ σ(rL)||
(AES256(rR||[C1]128, σ(rL))⊕ σ(rL)).

Figure 3: AES-based CCR [20]. C0 and C1 are two distinct 128−bit public
constants, r is a λ−bit value, [.]128 denotes the 128−bit binary representation,
σ is a linear orthomorphism on 128−bit values, leftn and rightn respectively
denotes taking the left and right n bits of the input.



4.2 Security model
A BAVC with aborts scheme is captured by correctness, extractable-binding and
hiding (real-or-random). These requirements are defined as follows:

Definition 3 (Correctness with aborts). A BAVC with aborts scheme is correct
if for all I ⊂ [N1]× · · · × [Nτ ], the following outputs True

pp← Setup(λ)
(com, decom,m)← Commit(λ, pp)

∀decomI ← Open(decom, I)

output decomI = ⊥ ∨ Verify(com, decomI , I) = m with all but a negligible prob-
ability, where m =

(
m

(α)
1 , . . . ,m

(α)
Nα

)
α∈[τ ]

.

Informally, a commitment scheme is extractable-binding if there exists an
extractor Ext such that the extracted message equals to the opened message
associated with a commitment.

Definition 4 (Extractable-Binding). Let the vector commitment scheme con-
structed by two hash functions, HCCR and H, Ext be a PPT algorithm such that

• Ext(QH, QHCCR , com) → ((m
(α)
j )j∈[Nα])α∈[τ ], i.e., given two sets of oracles

QH and QHCCR of query-response pairs, and a commitment com, Ext outputs
m

(α)
j or m

(α)
j = ⊥ if the committed value is invalid.

For any τ , Nα = poly(λ), the extractable-binding game EBBAVC
A for BAVC with

A is defined as follows:

1. pp→ Setup(1λ).

2. com← AH,HCCR(pp).

3. m̄← Ext(QH, QHCCR , com), where m̄ = ((m̄1
(α), ..., ¯mNα

(α))α∈[τ ]) is a message
vector output by Ext.

4. (m, decomI , I)← AH,HCCR(open, com), where m = ((m
(α)
j )j∈[Nα]\{iα})α∈[τ ].

5. Output 1 (success) if: Verify(com, decomI , I) = m, but m(α)
j ̸= m̄

(α)
j for some

α ∈ [τ ], j ∈ [Nα]\{iα}, where iα is the index of unopened nodes. Else output
0 (failure).

The advantage of A to win is denoted by AdvEBBAVC
A = Pr[EBBAVC

A = 1]. A
BAVC with aborts scheme is extractable with respect to Ext if AdvEBBAVC

A is
negligible, i.e., AdvEBBAVC

A (λ) ≤ negl(λ).
Informally, a BAVC with aborts is hiding if values at unopened indices re-

main hidden even after opening a subset of the vector. Formally:



Definition 5 (Hiding (real-or-random)). Let BAVC be an iv-based vector com-
mitment scheme. The adaptive hiding game for BAVC with τ , Nα = poly(λ),
parameter n and stateful A is defined as follows:

1. pp→ Setup(1λ).

2. b̄← {0, 1}, sd← {0, 1}λ, iv← {0, 1}λ.

3. (com, decom, (m̄1
(α), ..., m̄N

(α))α∈[τ ])←
CommitH(iv)

4. I ← AH(1λ, pp, com), where I ∈ [N1]× ...× [Nτ ].

5. decomI ← Open(decom, I).

6. m
(α)
j ← m̄

(α)
j for j ∈ [Nα] \ {iα}, α ∈ [τ ].

7. Set m(α)
iα
→

 random from M if b̄ = 0 ∧ α ≤ n

m̄
(α)
iα

otherwise

.

8. b← A
((

m
(α)
j

)
j∈[Nα]

, decomI

)
9. Output 1 (win) if b̄ = b else 0 (lose).

In the selective hiding experiment, A must choose I prior to receiving com.
The advantage AdvAdpHideBAVC

A,i (resp. AdvSelHideBAVC
A,i ) of an adversary A

is defined by Pr[A wins and n = i]−1/2 in the adaptive (resp. selective) hiding
game. We say BAVC is adaptively (resp. selectively) hiding if every PPT adver-
sary A has a negligible advantage of winning AdvAdpHideBAVC

A,i (AdvSelHideBAVC
A,i ).

4.3 Security proof of BACON
Following the security model in subsection 4.2, in this section, we give the
security proof of BACON.

Theorem 1 (Correctness) Our BACON is correct.

Proof 1 After the algorithms Setup, Commit and Open, com, decomI and I can
be obtained, where com = h, I = (i(1), ..., i(τ))) and m = (m

(α)
1 , ...,m

(α)
Nα

)α∈[τ ].
In the proposed BACON scheme, there is an abort mechanism. So the probabil-
ity of outputting decomI = ⊥ is negligible. When decomI = ((com(α)

i(α))α∈[τ ], S),
then the verification goes as follows:

• Given decomI , for each α ∈ [τ ] and i ̸= i(α), compute sd(α)i ;

• Compute m
(α)
i ← HCCR(sd

(α)
i ) and com(α)

i ← HCCR(sd
(α)
i ⊕1)||HCCR(sd

(α)
i ⊕2);



• Given com(α)

i(α))α∈[τ ], Compute h′ = H
(
com(α)

1 , . . . , com(α)
Nα

)
. If h′ = h, output((

m
(α)
i

)
i∈[Nα]\{i(α)}

)
α∈[τ ]

̸= m; otherwise, output ⊥.

The probability of outputting m is negligible. Therefore, the BACON scheme
offers correctness. □

Theorem 2 (Extractable binding) Let HCCR be a (qE , ε, δ)-extractable bind-
ing CCR function in the ideal model, where ε and δ are the upper bound of
probability that the adversary fails and succeeds in the extractable-binding ex-
periment of HCCR, respectively. HRO is a random oracle for the hash function
H. Therefore, as defined in Definition 4, our proposed cGGM-based BAVC with
aborts scheme, BACON, satisfies AdvEBBAVC

A ≤ 1+qH(qH−1)/2
22λ

+ L · (δ + ε) for
any adversary A making qE queries to the ideal cipher oracle and qH queries to
the random oracle.

Proof 2 Firstly, define the extractor as Ext (c,QE) where c is a commitment
and QE is the transcript of ideal cipher queries and responses. The extractor
is supposed to output the pre-image of the commitment c. The extractor goes
through the random oracle’s transcript and looks for the pre-image of com. If
none can be found or the pre-image is not unique, then it outputs ⊥.

Assuming that the pre-image com(α)
1 , . . . , com(α)

Nα
is unique then the extractor

applies Ext (comNi
,QE), Ni ∈ {1, ..., Nα} to get mi. Finally, the extractor

outputs {mi}i∈[1,Nα]. We bound the probability AdvEBBAVC
A . Since HRO is a

random oracle, the probability of the extractor outputting ⊥ due to finding a
collision is bounded by 1

22λ
+ 2

22λ
+ · · · + qH−1

22λ
= qH(qH−1)

2·22λ . The probability of
not being able to find a pre-image is bounded by 1

22λ
. Therefore, the extraction

of com succeeds except with probability 1+qH(qH−1)/2
22λ

. Furthermore, the event of
extraction failure for i /∈ I would imply extraction failure for Ext (comNi ,QE),
which is bounded by ε + δ. Therefore, by taking a union-bound on all the leaf
nodes, we conclude that

AdvEBBAVC
A ≤ 1 + qH (qH − 1) /2

22λ
+ L · (δ + ε)

□

Intuitively, to prove real-or-random hiding we again leverage the properties
of the HCCR to show that an adversary will only have a negligible advantage
when making queries to an ideal cipher oracle to guess the leaves of the whole
tree.

Theorem 3 (Hiding real-or-random) The BACON offers adaptive hiding.
Let HCCR be (t, q, p, ϵ)-circular correlation robust and let H be a random oracle.
Then for any adversary A in the adaptive hiding game making |Q| queries to
H, we have

AdvAdpHideBAVC
A,i ≤

|Q|
22λ

+ AdvPRG
B (λ) + ϵ



Proof 3 Let B be a distinguisher which can access the CCR hash oracle OCCR,
where OCCR(x, b) = HCCR(x ⊕∆) ⊕ b ·∆. Here B simulates the random oracle
H. B’s goal is to output a bit that distinguishes between the real world and ideal
world. Then B, who is regarded as an adversary against the CCR game, works
as follows:

1. Sample b̄, sdα ← {0, 1}λ, iv← {0, 1}2λ.

2. Generate com, decomI and m as follows:

• Sample decom, {com(α)
i } and {m(α)

i }, α ∈ [τ ], i ∈ I, uniformly at random.

• Compute {mi}i/∈I and {comi}i/∈I using the Verify algorithm.

• Compute com = H(com1, ..., comNα).

3. Receive the challenge I ← AH(1λ, pp, com), where I is the set of opened nodes
and I ∈ [N1]× ...× [Nτ ].

4. i(α) is the index of the unopened node in the subtree α, i(α) = α1...αd. If
αi = 0, we need to compute the right child, which is an element of the
authentication path.

5. We assume that α1 = 1, which means the authentication path starts from the
right subtree. Then the simulation process of Commit is as follows:

(a) Samples k1ᾱ1
← {0, 1}λ and sets si

(α)

1 = k1ᾱ1
and add si

(α)

1 to S if si
(α)

1 is
not in S.

(b) For i ∈ [2, d], let j∗ = α1||...||αi−1 computes kij∗+ᾱi
= OCCR(si

(α)

i−1, ᾱi)⊕
ᾱis

i(α)

i−1. For all j ∈
[
0, 2i−1

)
, j ̸= j∗, computes ki2j = HCCR(k

i
j), ki2j+1 =

HCCR(k
i
j) ⊕ kij. Finally, updates si

(α)

i = si
(α)

i−1 ⊕ kij∗+ᾱi
and add si

(α)

i to
S if si

(α)

i is not in S.

(c) For i(α) ∈ I, computes m(α)
i ← OCCR(s

i(α)

d , 0) and com(α)
i ← OCCR(s

i(α)

d ⊕
1, 0)||OCCR(s

i(α)

d ⊕ 2, 0). Otherwise, for i ∈ [0, Nα) ⊆ [0, 2d) but i /∈ I,
computes mi ← HCCR(k

i
d) and comi ← HCCR(k

i
d ⊕ 1)||HCCR(k

i
d ⊕ 2).

(d) Compute h(α) by simulating the oracle H by inputting
(
iv, com(α)

1 , . . . , com(α)
Nα

)
for α ∈ [τ ].

6. Repeat steps 1, 2, 3, 4 and 5 for τ times to recompute the big cGGM trees
and get all messages and commitments for all hidden nodes.

7. Compute h by simulating the oracle H via inputting
(
iv, h(1), . . . , h(τ)

)
.

8. Output (com = h, decomI = S, m = (m
(α)
1 , ...,m

(α)
Nα

)α∈[τ ]).

9. Assign decomI and the adversary A outputs b.

10. Output 1 if b̄ = b, else 0.



B’s advantage. b is the CCR oracle OCCR’s hidden bit. If b = 1, then B is
in the real world. If b = 0, B is in the real world is in the ideal world. The
advantage that B distinguishes the CCR hash game is

AdvCCR
B (λ) =

∣∣Pr[1← BOCCR(1λ) | b = 1]

−Pr[1← BOCCR(1λ) | b = 0]
∣∣

Except the CCR oracle, there are two differences between the real adaptive
game and the ideal world simulated by B for A:

1. B aborts if the simulation of OH fails;

2. k10 and k11 are chosen uniformly random, instead of computed by PRG.

The first difference during the simulation of OH can be noticed if A make queries
to OH using the same iv value. Then we can get the probability that A that
notices this difference as follows:

Pr[A notices OH] ≤
|Q|
22λ

(1)

The second difference can be reduced to distinguishing the output of PRG from
a uniformly random output. The probability that A behaves differently equals to
the case that B plays the PRG game using A as a subroutine. Then we can get

Pr[A notices PRG] ≤ AdvPRG
B (λ) (2)

If b = 1, then after changes 1 and 2, A’s view is distributed identically to the
real hiding game G0 if b̄ = 1 and A’s view is distributed identically to the ideal
game G1 if b̄ = 0. Therefore, we can get

Pr[1← BOCCR(1λ) | b = 1] = Pr[A wins changed game]

If b = 0, the view of A is sampled uniformly at random. The we have

Pr[1← BOCCR(1λ) | b = 1] = 1/2

Finally, putting all cases together, we can get

AdvAdpHideBAVC
A,i (λ) ≤ |Q|

22λ
+ AdvPRG

B (λ) + AdvHCCR
B (λ) (3)

Because HCCR is a (t, q, p, ϵ)-circular correlation robust hash function, we can
get the

AdvAdpHideBAVC
A,i ≤

|Q|
22λ

+ AdvPRG
B (λ) + ϵ



5 Applications
It is well known that AVCs are important components in FAEST and other
MPCitH style NIZK proof systems. In this section, we discuss how to apply our
BACON to FAEST version 2 to improve the efficiency.

In a MPCitH style signature, to create a signature, given a pair of public
values x, y, the prover needs to prove knowing a witness w such that f(x,w) = y,
where f is a one-way function. To achieve this, the prover simulates an MPC
protocol between N simulated parties that realizes f(x,w), where w is secret-
shared as input shares to N parties. The prover then commits to the views
and internal states of each party. After receiving the commitments, the verifier
generates a challenge index and sends it to the prover. The prover opens a
subset of these commitments to the verifier. Finally, the verifier checks them and
decides whether to accept or reject. This process can be made non-interactive
using the Fiat-Shamir transformation [29]. MPCitH is highly efficient for small
to medium-sized circuits.

To handle large circuits, recent literature in interactive ZK protocols [11,13,
18, 24–26, 30, 39–42, 44–46] makes use of sVOLE, which are called VOLE-ZK.
A VOLE is a two-party correlation of length n between a prover and a verifier
defined by a random global key ∆ ∈ F2k , a set of random bits ui ∈ F2, a ran-
dom VOLE tag vi ∈ F2k and VOLE keys wi ∈ F2k such that wi = ui ·∆ − vi,
i = 0, ..., n − 1. The prover obtains ui, vi while the verifier obtains ∆, wi. The
correlations allow the prover to commit all ui as linear homomorphic commit-
ments, which can lead to efficient proof systems. Compared with MPCitH style
ZK systems, VOLE-ZK is featured with a shorter proof size and faster run-
ning time. However, this is in the designated verifier setting. In 2023, Baum et
al. [9] transform VOLE to VOLEitH to achieve a postponed VOLE functionality
and make use of the Fiat-Shamir transformation to propose a new NIZK frame-
work. FAEST version 2 [10] integrated the large GGM based BAVC with aborts
scheme [8] into FAEST [9] to improve the efficiency and achieve shorter signa-
ture size, which is a second-round candidate for additional NIST post-quantum
digital signatures.
Optimizing FAEST version 2. As described, the recent VOLE-based inter-
active ZK protocols and non-interactive zero-knowledge (NIZK) proofs based
on MPCitH or VOLEitH extensively make use of commitment schemes, which
adopt a GGM-style tree to generate and open commitments. Here, we take the
FAEST version 2 [10] signature scheme as an example of applications of our
proposed large cGGM-based BAVC with aborts scheme, BACON.

In FAEST [9], to obtain the desired soundness, it is required to run τ in-
stances of VOLEitH. Using a BAVC with aborts in FAEST version 2 [10], one
can remove the need for τ > 1 and take the leaves generated from one large
GGM tree as inputs for the VOLEitH protocol. The verifier will then provide
the random challenge value ∆, ask to reveal all but one tree leaf in each VOLE
instance. FAEST version 2 [10] integrated the large GGM-based BAVC with
aborts scheme into FAEST to get better efficiency and shorter signature size.

To enable BAVC with aborts for FAEST, the FAEST version 2 [10] signing



algorithm is changed as described in [8]. FAEST version 2 retains the same
VOLEitH approach but adds rejection sampling. To highlight the slight dif-
ference, consider FAEST signing algorithm when processing with the challenge
vector detailed in Algorithm 1.

Algorithm 1 FAEST Signing
...
chall3 ← H3

2 (chall2||ã||b̃;λ)
I ← DecodeChallenge(chall3)
decomI ← BACON.Open(I)
σ ← σ||decomI

return σ

In Algorithm 1, the prover opens the challenge vector to create the decom-
mitment to send to the verifier. This process is modified in FAEST version 2 as
outlined in Algorithm 2.

Algorithm 2 FAEST version 2 Signing
...
Let ctr ← 0
Retry:
chall3 ← H3

2 (chall2||ã0||ã1||ã2||ctr;λ)
I ← DecodeChallenge(chall3[0 : λ− w − 1])
decomI ← BACON.Open(I)
if decomI = ⊥ or chal3[λ−w : λ] ̸= 0w then ctr ← ctr+1 and go to Retry
σ ← σ||decomI ||ctr
return σ

The procedure above simply adds a counter ctr to enable rejection sampling.
Every time the challenge index leads to a decommitment that is larger than the
threshold, a new challenge index is generated, and the counter is incremented
after the prover performs a proof of work.

6 Comparisons
There are some works on the GGM/cGGM based punturable pseudorandom
function (PPRF) [17, 34] or AVC schemes [8, 37]. Among these schemes, we
compare [8] with our BACON, because we both adopt a large tree structure
and add the abort mechanism into the BAVC schemes.

6.1 Theoretical comparisons
As described throughout the paper, BACON utilizes one big cGGM tree to
instantiate a BAVC with aborts.

Recall that we have discussed three basic GGM trees: a GGM tree [31],
a cGGM tree [33], and a pcGGM tree [33]. Comparisons among these three



trees are shown in Table 1. Given a tree with d layers, a GGM construction
requires (2d−1 − 1) PRG calls and therefore (2d − 2) hash calls, a cGGM tree
requires (2d−1−1) HCCR hash calls, and a pcGGM tree requires (2d−1+2d−2−1)
HCCR hash calls. Based on the property of geometric progression, we can have
2d − 2 = 20 + ... + 2d−2 + 2d−1 − 1 > 2d−2 + 2d−1 − 1. Then one can get the
efficiency result of these three tree constructions in descending order of cost as
GGM tree [31]>pcGGM tree [33]>cGGM tree [33].

As claimed in [33], with the same number of layers, a cGGM tree can reduce
2x computation and a pcGGM tree can reduce 1.33x computation when they
are used to construct correlated oblivious transfer (COT) and subfield VOLE
(sVOLE) compared to a GGM tree. The difference between a cGGM tree and
a pcGGM tree is that a pcGGM tree can be used to construct sVOLE [16], the
security of which relies on the pseudorandomness of tree nodes. There is no
BAVC scheme based on a large pcGGM, the possible reason is the efficiency is
worse than a large cGGM. In our paper, we propose a big cGGM tree, which
consists of multiple small cGGM subtrees.

We now analyze different tree structures for BAVC schemes. Existing BAVC
schemes cover two instantiations, one big GGM tree and multiple cGGM trees.
As mentioned in the Introduction of this paper, using one big tree instead of
multiple small trees can make opening all but τ leaves of the former more efficient
than opening all but one leaf in each of the small trees in parallel because
some authentication paths in the big tree will merge, which can reduce the
commitment size. We focus on the comparison between our proposed one big
cGGM tree based BAVC scheme and state-of-the-art big tree structure, i.e.,
one big GGM tree [8] based BAVC scheme. We assume that there are τ small
trees and each small tree i has Ni, i ∈ [τ ] leaf nodes. The results are shown in
Table 1. Our big cGGM tree needs fewer hash calls than one big GGM tree [8].

Moreover, adding the number of hash calls used in generating the commit-
ments from the leaf layer, we list the results in Table 2. Note that we make use
of CCR hash functions for generating internal nodes while generating commit-
ments from leaf layers, we utilize the H same as in [8], which can be modeled
as random oracle. During implementation, the running times of CCR hash and
H are different. Here, we just add them together to show that our BACON has
improvement compared with [8]. We did not include the complexity comparison
of BAVC.Open and BAVC.Verify because the number of opened nodes and the
threshold Topen both depend on concrete implementations.

Discussion on future implementations. In the beginning, we imple-
mented our BACON based on FAEST version 1, however, NIST released the
FAEST version 2. Before implementing our BACON into FAEST version 2, the
FAEST team claimed that they replaced the hash function calls and revisited
the evaluation of the AES block cipher to achieve improvements on both secu-
rity and practical efficiency [7], which was just accepted by CRYPTO 2025. [7]
will be publicly accessible soon. We will integrate our BACON into [7] in the
full version later.



Table 1: Comparisons among tree constructions

Type Tree construction Number of CCR hash calls

Small tree

GGM tree [31] (2d − 2)

pcGGM tree [33] (2d−1 + 2d−2 − 1)

cGGM tree [33] (2d−1 − 1)

Big tree
GGM tree [8] 2d − 2

Our cGGM tree 2d−1 − 1

For big tree constructions, we assume there are τ small trees and one small tree
i, i ∈ [τ ] has Ni leaf nodes, then the total number of layers in a big cGGM tree
d = log2 (

∑τ
i=1 Ni).

Table 2: Comparisons between two large tree-based vector commitment schemes

Scheme Number of function calls

[8] (2d − 2)HCCR + 3 ∗ 2dH

Our BACON (2d−1 − 1)HCCR + 3 ∗ 2dH

7 Conclusions
BAVC allows the execution of multiple AVCs simultaneously. Further, adding
an abort mechanism to BAVC allows further parameterization to reduce com-
mitment sizes. This paper presents BACON based on a big cGGM tree, which
is more efficient than the state-of-the-art [8] based on one large GGM tree.

We prove the security of BACON in the random oracle model and ideal
cipher model. We have implemented our scheme based on FAEST version 1.
Before updating this implementation to a new version based on FAEST version
2, we noticed that an improved FAEST scheme [7], called FAESTer, will soon
be publicly available. Therefore, we will release our implementation based on
the state-of-the-art FAEST scheme in the full version later.
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