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Abstract—All-but-one Vector Commitments (AVCs) randomly
opens all but one of the committed vector values. Typically AVCs
are instantiated using Goldwasser-Goldreich-Micali (GGM) trees.
Generating these trees comprises a significant computational cost
for AVCs due to a large number of hash function calls. Correlated
GGM (cGGM) trees have been proposed to halve the number of
hash calls and Batched AVCs (BAVCs) using a single GGM tree
were integrated in the FAEST signature scheme, which improves
efficiency and reduces the signature sizes. This paper proposes
BACON, a BAVC with aborts that leverages a single cGGM tree.
BACON executes multiple instances of AVC in a single batch
and enables an abort mechanism to probabilistically reduce the
commitment size. We prove that BACON is secure under the
ideal cipher model and the random oracle model. We also discuss
the possible application of the proposed BACON and show the
theoretical efficiency compared to state-of-the-art.

Index Terms—Correlated GGM trees, Batched all-but-one
vector commitments, Post-quantum signatures

I. INTRODUCTION

Multi-party Computation-in-the-Head (MPCitH) paradigm
[1] is a popular method to create post-quantum digital signa-
tures using a non-interactive zero-knowledge proof (NIZKP),
which proves that a signer knows a secret witness to the
output of a function. MPCitH-style signatures can be very
efficient for small to medium-sized circuits and have been
proposed as candidates for the NIST competition on post-
quantum signatures [2]-[S]. However, one drawback of the
proof size in a MPCitH-style signature is linear with the size of
the underlying circuit which renders this approach inefficient
for large-sized circuits.

In 2018, Boyle et al. [6] proposed a new ZKP framework
that makes use of Vector Oblivious Linear Evaluation (VOLE)
correlations to create a commit-and-prove ZK protocol. Re-
cently, several interactive ZK protocols [7]-[20] have been
proposed, which use subfield VOLE (sVOLE) correlations.
We will refer to these protocols as VOLE-ZK, which pro-
vide fast end-to-end runtimes and are scalable for large cir-
cuits compared to MPCitH-based ZK proofs. However, the
aforementioned VOLE-based ZK protocols are restricted to

a designated-verifier setting'. To overcome this restriction,
in 2023, Baum et al. [21] proposed the VOLE-in-the-Head
(VOLEItH) enabled VOLE-based ZK proofs to be publicly
verifiable. The VOLEitH-style signature can be instantiated
using AES as the one-way function. This creates the FAEST
signature scheme, which is a second-round candidate of the
NIST additional post-quantum signatures competition.

A key building block in both MPCitH and VOLEItH is the
All-but-one Vector Commitment (AVC). Informally, an AVC
scheme consists of four PPT algorithms, a Setup algorithm
which establishes the parameters, a Commit algorithm which
binds a hidden vector of values to commitment values, an
Open algorithm which randomly opens (i.e., outputs) all but
one of the previously committed values and a Verify algorithm
which ensures that the committed values and the hidden values
are consistent.

A. Related work

In current instantiations of AVC schemes, an initial seed
acting as the root of the Goldreich-Goldwasser-Micali (GGM)
tree [22] is extended to generate a set of pseudorandom
numbers by using a length-doubling pseudorandom gener-
ator (PRG) recursively. Revealing all but one leaf allows
verification of the commitments but retains the secrecy of
the prover’s witness. However, this construction requires a
logarithmic number of tree nodes to be sent to the verifier. Guo
et al. [23] replaced the length-doubling PRG with the Davies-
Meyer circular correlation robust (CCR) hash function [24]
and proposed a new tree structure, called a correlated GGM
(cGGM) tree. In a cGGM tree, the left child node is the
hash output of the parent node while the right child node
is computed by XORing the parent node and the left child
node. Then the sum of all nodes in one layer is a constant

'In a designated-verifier setting, a specified party, i.e., the “designated
verifier”, is introduced to prevent the verifier from turning around and
convincing others that they have the secret. The proof is constructed in such
a way that only the designated verifier can verify the proof, and no one else
can. This provides stronger privacy guarantees, as the prover can be assured
that only the intended verifier can learn anything about the secret.



value. The cGGM tree can reduce the number of hash calls
by half compared with the GGM tree, therefore this tree
is also referred to as a “half tree”. To be compatible with
the sVOLE approach [7], [25], whose security relies on the
pseudorandomness of leaf nodes, the authors use the PRG
when generating the leaf layer (to break down the correlation
of the nodes in the leaf layer). This new GGM tree is called
the pseudorandom cGGM tree (pcGGM).

There are a number of works focusing on constructing more
efficient AVC schemes [26]-[30] or security [2], [3], [3],
[31]-[35]. Details of these work can be referred to the full
version. Based on the literature review, the question remains
if we can propose a more efficient tree structure to construct
BAVC schemes while being against the multi-target attack
simultaneously or not.

B. Our contributions

In this paper, to improve the efficiency, we propose one
big cGGM tree to construct a new BAVC with aborts scheme
called BACON, which is more efficient than the state-of-
the-art BAVC with aborts scheme [27]. In short, a prover
generates one big cGGM tree with sufficient leaves to be
used for multiple AVCs. A verifier will provide a challenge
index to reveal all but one value in each AVC. Then a
prover can send the minimum number of cGGM tree nodes
to construct an authentication path for verification. The abort
mechanism allows the prover to request a new challenge
index if the number of tree nodes exceeds a threshold at
a small computational cost. After receiving a set of opened
c¢GGM nodes, the verifier recomputes the partial cGGM tree
recursively. Finally, the verifier checks whether the computed
commitment matches the given commitment. Choosing the
c¢GGM tree significantly reduces the cost of tree generation—
specifically, given a parent node, generating two child nodes
requires only a single invocation of the underlying hash
function. Furthermore, to resist collision attacks, we apply a
iv value as a master salt to internal nodes of the cGGM tree.
Moreover, we use AES in CTR mode, which allows the salt
to be varied easily using a counter. Our contributions are as
follows:

1) We propose a new big cGGM tree to construct a new
BAVC scheme, called BACON. Moreover, for notation
convenience, we make use of state-of-the-art non-tweaked
CCR hash function from [30] constructed using only AES
to meet all security levels.

2) We provide formal security proofs for our scheme, BA-
CON, under the ideal cipher model and random oracle
model.

3) We discuss the application of our
FAEST/FAEST version 2/ [29].

4) We compare our BACON with the large GGM tree-based
BAVC with aborts scheme [27] in theory and show our
BACON is more efficient.

BACON to

II. PRELIMINARIES

GGM trees start with an initial random value and expand it
to numerous pseudorandom values. This is a binary tree that
recursively applies a length-doubling Pseudorandom Generator
PRG : {0,1}* — {0,1}?* to create a pseudorandom left
and right child nodes. To halve the computational cost, a
cGGM tree [23] instead uses a CCR hash function H where
the left node is defined as H(parent) and the right node as
left®parent = H (parent)®parent [23]. The hash function
calls is halved as a CCR hash function only requires one hash
function whilst a length-doubling PRG often need two. Let
A be the security parameter and 7 € N be the repetition
parameter which determines the number of AVCs required.
Each AVC has a length N, € N, o € [7]. A GGM-type tree
has d € N layers. The total number of leaves across all AVCs
is calculated as L = 3¢ Ny Define the challenge index set
as I = (i, ...,i(M) C [Ny] x ... x [N,]. Formally, a BAVC
with aborts is defined as follows [27]:

Definition 1: A BAVC with aborts =
(Setup, Commit, Open, Verify)  (with  message  space
M). Let E, E~! be the ideal cipher oracles.

o Setup(1*) — pp: This setup algorithm is run by the sender,
taking the security parameter A as input and outputting
public parameters pp, which is input to all other algorithms.

« Commit(pp) — (com,decom, m =
M, . m N Jae[r]): This algorithm is run by the sender.
Given the public parameters pp as input and outputs a
commitment com with o enlng information decom for the
message vector m = (m\”, mg\?))ae[ﬂ € MM A FN-

« Open(decom,I) — decomI V L: This algorithm is run
by the sender. On input an opening decom and the index
vector I C [N1]x---x[N;] chosen randomly by the sender,
output L or an opening decom; for I.

« Verify(com,decomy, I) —

((m;a)) ) VvV 1: This algorithm is
JEINaI\{ia} a€lr]

run by the receiver. Given a commitment COM, an opening
decom;, either output all messages <m§a [
j€

(accept the opening) or L (reject the opening).

Na]\{ia}

III. BACON: A BAVC WITH ABORTS SCHEME

BACON adopts the cGGM tree [23] and AES-based CCR
hash [30] to construct a BAVC with aborts across three security
levels. To provide resistance against collision attacks, BACON
adds an ¢v value as a salt when constructing the cGGM tree.
Following section II, let L be the number of leaf nodes, d the
layer of the cGGM tree, so L = 2. Let 7 : [0,2¢ — 1] —
{(, %) }1<i<n,, be a bijective function mapping each leaf of
the big cGGM tree to each AVC, Ty, be the threshold of
the number of internal nodes to be opened.

Let Heer @ {0,1}* — {0,1}* be a CCR hash function
defined in section II, and H : {0,1}* — {0,1}?>* be a
collision-resistant hash function. BACON is shown in Fig. 1.

BACON.Setup establishes the public parameters. In
BACON.Commit, a single ¢cGGM tree with L leaves is



generated. All leaves are then interleaved into 7 AVCs using
the mapping 7. A message and its corresponding commitment
can be computed given a mapped leaf Sdgo‘) using CCR hash
functions. The prover can then compute the final commitment
value h using all comga), a € [1].

BACON.Open computes the decommitment with respect
to the challenge set I, the decommitment consists of the
commitments of change set I and authentication path of
hidden nodes in I. The size of the opened nodes set |S|, is
then compared against a threshold Topen. If [S] < Topens
a new decommitment is produced as a new challenge set
is requested and the prover incurs a proof-of-work to do
so. A discussion this mechanism can be found in [27].
BACON.Verify recomputes the cGGM leaves given the final
commitment value, decommitment and challenge set. Finally
BACON.Verify compares the computed commitment value
with the given commitment value and decides whether the
commitment is valid or not.

IV. SECURITY ANALYSIS

We prove the security properties of BACON in this section.
We leverage the extractable-binding security property of the
Hcer [36]) proved in [30] to prove that an adversary is prob-
abilistically bounded in their ability to win in the extractable-
binding game in our scheme. For the hiding property, the proof
relies on the CCR property proved in [30]. Further, we model
the Heoor as an ideal cipher oracle.

Informally, a function fr(z,b) = H(zx ® R) ®b- R is
CCR if it is pseudorandom provided that x is never repeated.
CCR hash functions can be constructed from a fixed-key block
cipher such as AES and a linear orthomorphism o [30].

A. Security Model

A BAVC with aborts scheme must satisfy correctness,
extractable-binding and hiding (real-or-random):

Definition 2: A BAVC with aborts scheme is correct if for
all I C [Ny] x -+ x [N;], the following outputs True

pp < Setup(X)
(com,decom, m) + Commit(\, pp)
VYdecom; < Open(decom, I)

output decom; = L Vv Verify(com,decom;,I) =
m with all but a negligible probability, where m =
(mga),...,mg\(;) =

>/ a€lr
Informally, a commitment scheme is extractable-binding if

there exists an extractor Ext such that the extracted message
equals to the opened message associated with a commitment.

Definition 3: Let the vector commitment scheme constructed
by two hash functions, Hccr and H, Ext be a PPT algorithm
such that:

o EX(QH, Qroen-cOM) = (M) je(no))ac(r)- i€ given
two sets of oracles Qn and QH,., of query-response pairs,
and a commitment com, Ext outputs mga) or mga) =1 if
the committed value is invalid.

For any 7, N, = poly()\), the extractable-binding game

EBE‘AVC for BAVC with A is defined as follows:

1) pp — Setup(1*).

2) com « AHHecr(pp).

3) m +— Ext(Qu, QHgen,COM),  where m =
(M1 (@), ..., my, (a))aem) is a message vector output by
Ext.

4) (m,decomy, ) < AMHeor(open,com), where m =
(™) etV fia} ) aelr]-

5) Output 1 (success) if: Verify(com,decom;, I) = m, but
m§a) # m§a) for some « € [7], j € [No]\ {ia}, where i,

is the index of unopened nodes. Else output O (failure).

The advantage of A to win is denoted by AdVEBJE;lAVC =

Pr[EBElAVC = 1]. A BAVC with aborts scheme is ex-
tractable with respect to Ext if AdVEBE{o‘VC is negligible, i.e.,
AdvEBBVC(N) < negl()).

Informally, a BAVC with aborts is hiding if values at
unopened indices remain hidden even after opening a subset
of the vector. Formally:

Definition 4: (Hiding (real-or-random)). Let BAVC be an iv-
based vector commitment scheme. The adaptive hiding game
for BAVC with 7, N, = poly()\), parameter n and stateful .4
is defined as follows:

1) pp — Setup(1*).

2) b+ {0,1}, sd «+ {0, 1}, iv « {0, 1} .

3) (com,decom, (11 (¥, ..., min () hepr)

Commit™(iv)

4) I + AH(1* pp,com), where T € [Ny] x ...

5) decom; < Open(decom, I).

6) m\® « m\® for j € [No] \ {ia}, a € [7].
random from M ifb=0Aa<n
m®) otherwise } '

X [N:].

7) Set m{®) — {

8 b A <(m§"))j€m] ,decom;)

9) Output 1 (win) if b = b else 0 (lose).
In the selective hiding experiment, .A must choose I prior to
receiving com.

The advantage AdvAdeideEC}/C (resp. AdeeIHidei’_\yC)
of an adversary A is defined by Pr[A wins and n =i]—1/2
in the adaptive (resp. selective) hiding game. We say BAVC
is adaptively (resp. selectively) hiding if every PPT adversary
A has a negligible advantage of winning AdvAdpHide%/®

(AdeeIHide%}’C).

B. Security proofs

Following the security model in IV-A, in this section, we
give the security proof of BACON.

Theorem 1 (Correctness): BACON satisfies correctness.
We omit the proof here due to the page limit. Please refer to
the full version.

Theorem 2 (Extractable Binding): Let Heog be a (¢g, €, 0)-
extractable binding CCR function in the ideal model, where
¢ and 0 are the upper bound of probability that the adversary
fails and succeeds in the extractable-binding experiment of
Hcer, respectively. Hro is a random oracle for the hash



. BACON.Setup(1*, L
. BACON.Commit(sd, iv) —
1) Sample k « {0, 1}*. k}||ki =

(com,decom, m = (m;"

(m

2) Fori € [2,d], j € [0,27"), compute kb; = Hocr(ky '), kb y = kb, @ ki
3) Deinterleave the leaves:
{sdga sd§$>} &kl ke
“J ag(r]

4) Compute m( — HCCR(Sd( )) and com

5) Compute h(®) < H (lv,comga) com(“)) for a

6) Output (com = h, decom =k, m = (m §“>, ...7m§\‘;)
« BACON.Open(decom =k, I = (i), ...,

2) Let S = {kg, . -Jfgd,l}- For each « € [7], remove

3) For i fromd—11t00, j € [0,2" — 1], if kj; € S and kj;, € S, replace both with &!~'.

com'?),
7

(@)
J

4) If |S| < Topen, output decom; =

((

« BACON.Verify(com,decomy, I)) — ((m ) -
JE|Na

from decom I, for each « e [7]
<— HCCR(Sd @) S
.,com” ))

1) Recompute sd\®
m§a> — HCCR(sdEQ)) and com
2) Compute h(®) = H (IV com(o‘)

3) If h # H (iv, hV

) — pp: Generate public parameters pp.

g eeey

PRG(sd, iv;2)), where A = k} @ ki

)« Heer(sd!™ @ 1)||Heer(sd™ @ 2), for o € [r] and i € [N,].

a)aE
(7)) — decom; v L:
1) Recompute k7 for i € [2,d],j € [0,2'~") from k as in Commit.

)ae[r],S), otherwise output L.

for each a € [7].

.,h(™)) output L. Otherwise, output <(m

(@)

my)aelr]):

€ [7] and compute h < H (iv, h(V, ... 1)),

[])-

the associated path of nodes krl(a i) from S.

Vv L:

{l<a)})ll€[‘f']

and i # i(®) using the available keys in S, and compute
1)|[Heor (sdi™ @ 2).

(@)

>ie[Na1\{i<a>}>ae[T1'

Fig. 1.

function H. Therefore, as defined in Definition 3, our proposed
c¢GGM-based BAVC with aborts scheme, BACON, satisfies
AdvEBBVC < W + L - (6 + ¢) for any adversary
A making qg queries to the ideal cipher oracle and gy queries
to the random oracle.

Proof 1: Define the extractor as Ext (¢, Qp), ¢ is a com-
mitment and Qp is the transcript of ideal cipher queries and
responses. The extractor is supposed to output the pre-image
of the commitment c. The extractor goes through the random
oracle’s transcript and looks for the pre-image of com. If none
can be found or the pre-image is not unique, outputs L.

Assuming that the pre-image com(a) com( @) i un1que
then the extractor applies Ext (comy,, Q E) N; € {1 N.}
to get m;. Finally, the extractor outputs {m;},c; v, - We
bound the probability AdvEBBAVC Since Hpgp is a random
oracle, the probability of the extractor outputting 1 due to

finding a collision is bounded by 53x + 55x + -+ + q22>\
alan=1) The probability of not being able to find a pre-

2.22X
image is bounded by 22% Therefore, the extraction of com

1+qu(ga—1)/2
22X

succeeds except with probability . Furthermore,
the event of extraction failure for ¢ ¢ I would imply extraction
failure for Ext (comy,, Qp), which is bounded by & + 4.
Therefore, by taking a union-bound on all the leaf nodes, we

BACON

conclude that

AdvEBEAVC < L+ an(an —1)/2 +L-(6+e)
22X

]

Theorem 3 (Hiding real-or-random): Let Hgcr be
(t,q,p, €)-circular correlation robust and let H be a random
oracle. For any adversary A in the adaptive hiding game

making |Q| queries to H, we have

|Q| + AdVPRG

AdvAdpHideZ; < -5

(A) +e

Proof 2: Let B be a distinguisher who can access the CCR
hash oracle Occr, where Ogor(z,b) = Hocr(z @A) B b- A.
B, who is regarded as an adversary against the CCR game,
works as follows:

1) Sample b, sd, + {0, 1}, iv < {0, 1}
2) Generate com, decom; and m as follows:
« Sample decom, {com!®} and {m*'}, a € [r], i € I,
uniformly at random.
o Compute {m;};¢; and {com;};¢; using the Verify al-
gorithm.
« Compute com = H(comy, ...,comy_ ).
3) Receive the challenge I < A"(1*, pp,com), where I is
the set of opened nodes and I € [N1] X ... x [N;].



4) i(@) is the index of the unopened node in the subtree a,
i@ = ay..aq. If a; = 0, we need to compute the right
child, which is an element of the authentication path.

5) We assume that «; = 1, which means the authentication
path starts from the right subtree. Then the simulation
process of Commit is as follows:

a) Samples kL < {0,1}* and sets sﬁ(a)
( ) toSlfsl( " is not in S.
b) Forz € [2,d], let j* = 041”

= k;l and add

Jlai—1 computes ki, =

OCCR(si"") &;) @ a;si"). For all j € 0,27~ 1),j7£j ,
computes k5; = Hecr(k}), k5;.1 = Heer(k}) @ k:'
Flnally, updates s} i = sz(_”i @ /ﬂz +a, and add s; i
S if Si is not in S.

¢) For i(®) e I, computes m( ) OCCR(SZ(Q),O) and
comg ) — OCCR(Sd 69 1 O)HOCCR(Sd(a) @ 2,0). Oth-

erwise, for i € [0, N,) C [0, 24) but i ¢ I, computes
my; <— HCCR(kzl) and com; < HCCR(kfi@l)HHCCF{(kZﬁB

2).
d) Compute h(® by simulating the oracle H by inputting
(iv, com{®, ... com(® )) for « € [7].

6) Repeat steps 1, 2, 3, 4 and 5 for 7 times to recompute the
big cGGM trees and get all messages and commitments
for all hidden nodes.

7) Compute h by simulating the oracle H via inputting

(iv, A, ... ™).
8) Output (com = h, decom; = S, m =
( (10()7 '~7mg\(;:))a€[7'])'

9) Assign decom; and the adversary A outputs b.

10) Output 1 if b =", else 0.

B’s advantage. b is the CCR oracle Ogcr’s hidden bit. If
b =1, then B is in the real world. If b = 0, B is in the real
world is in the ideal world. The advantage that 53 distinguishes
the CCR hash game is

AdVEeR () = [Pr[1 « BOeor(1) | b = 1]
— Pr[l « BPcr(12) | b= 0]

Except the CCR oracle, there are two differences between the
real adaptive game and the ideal world simulated by B for A:
B aborts if the simulation of Oy fails; k4 and ki are chosen
uniformly random, instead of computed by PRG. The first
difference during the simulation of Oy can be noticed if A
make queries to Oy using the same iv value. Then we can get
the probability that A that notices this difference as follows:
[

Pr[A notices Oy] < 220

The second difference can be reduced to distinguishing the
output of PRG from a uniformly random output. The prob-
ability that .4 behaves differently equals to the case that B
plays the PRG game using A as a subroutine. Then we can
get

Pr[A notices PRG] < Advg ¢ (\) (1)

If b = 1, then after changes 1 and 2, A’s vigw is distributed
identically to the real hiding game Gy if b = 1 and A’s

view is distributed identically to the ideal game G if b = 0.
Therefore, we can get

Pr[l < BO®(1*) | b = 1] = Pr[A wins changed game]

If b = 0, the view of A is sampled uniformly at random. The
we have
Pr[l « BO<®(1*) | b=1] = 1/2

Finally, putting all cases together, we can get

|Q|+AvaRG( )+AdvHeeR (\) (2)

AdvAdpHide[ (V) < o33

Because Heer is a (¢, ¢, p, €)-circular correlation robust hash
function, we can get the

Q) PRG
< oo + Advg T () + €
V. APPLICATIONS
Our BACON, as a building block, can be applied to the
FAEST signature. Due to the page limit, we omit details here.
Please refer to full version.

AdvAdpHide®© <

VI. COMPARISONS

Comparisons among a GGM tree, a pcGGM tree and a
cGGM tree are shown in Table I. Given a tree with d
layers, a GGM construction requires (2¢71 — 1) PRG calls
and therefore (2¢ — 2) hash calls, a ¢cGGM tree requires
(2971 — 1) Hgor hash calls, and a pcGGM tree requires
(2971 42972 1) Hgger hash calls. We can have 2¢ — 2 =
204 424-249d=1_1 > 9d=24 9d=1_1 Then the efficiency
result of these three tree constructions in descending order of
cost as GGM tree [22]>pcGGM tree [23]>cGGM tree [23].
Moreover, adding the number of hash calls used in generating
the commitments from the leaf layer, we list the results
in Table II. We initially implemented BACON on FAEST.
However, the NIST has released an updated version, FAEST
v2 which replaced the hash function calls and revisited the
evaluation of the AES block ciphers to achieve improvements
on both security and practical efficiency [29]. We will integrate
BACON with FAEST v2 once the latter is publicly available.

TABLE I
COMPARISONS AMONG TREE CONSTRUCTIONS

Type Tree construction | Number of CCR hash calls
GGM tree [22] (27 —2)
Small tree | pcGGM tree [23] (24T 127972 _7)
cGGM tree [23] (29-T-1)
Big tree GGM tree [27] 29 -2
Our cGGM tree 24-1T 1

For big tree constructions, we assume there are 7 small trees and
one small tree ¢, ¢ € [7] has N; leaf nodes, then the total number
of layers in a big ¢cGGM tree d = log, (3_7_, Ni).

VII. CONCLUSIONS
This paper presents BACON, a BAVC based on one cGGM
tree which is more efficient than state-of-the-art. We proved
the security of BACON in the random oracle model and ideal
cipher model.



TABLE II
COMPARISONS BETWEEN TWO LARGE TREE-BASED VECTOR
COMMITMENT SCHEMES

Scheme Number of function calls
[27] (2% — 2)Hger + 3 * 29H
Our BACON | (29T — 1)Hceg + 3 * 29H
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