
An Improved Vector Commitment Construction
with Applications to Signatures

Yalan Wang∗⋆, Bryan Kumara†¶⋆, Harsh Kasyap†∥, Liqun Chen∗, Sumanta Sarkar§, Christopher J.P. Newton∗,
Carsten Maple†‡, Ugur Ilker Atmaca†‡

∗University of Surrey, Email: {yw0010, liqun.chen, c.newton}@surrey.ac.uk
†The Alan Turing Institute, Email: {hkasyap, cmaple, uatmaca}@turing.ac.uk

‡University of Warwick
§University of Essex, Email: sumanta.sarkar@essex.ac.uk

¶University of Oxford, Email: bryan.kumara@exeter.ox.ac.uk
∥Indian Institute of Technology (BHU), Varanasi, India

⋆ Joint first authors

Abstract—All-but-one Vector Commitments (AVCs) randomly
opens all but one of the committed vector values. Typically AVCs
are instantiated using Goldwasser-Goldreich-Micali (GGM) trees.
Generating these trees comprises a significant computational cost
for AVCs due to a large number of hash function calls. Correlated
GGM (cGGM) trees have been proposed to halve the number of
hash calls and Batched AVCs (BAVCs) using a single GGM tree
were integrated in the FAEST signature scheme, which improves
efficiency and reduces the signature sizes. This paper proposes
BACON, a BAVC with aborts that leverages a single cGGM tree.
BACON executes multiple instances of AVC in a single batch
and enables an abort mechanism to probabilistically reduce the
commitment size. We prove that BACON is secure under the
ideal cipher model and the random oracle model. We also discuss
the possible application of the proposed BACON and show the
theoretical efficiency compared to state-of-the-art.

Index Terms—Correlated GGM trees, Batched all-but-one
vector commitments, Post-quantum signatures

I. INTRODUCTION

Multi-party Computation-in-the-Head (MPCitH) paradigm
[1] is a popular method to create post-quantum digital signa-
tures using a non-interactive zero-knowledge proof (NIZKP),
which proves that a signer knows a secret witness to the
output of a function. MPCitH-style signatures can be very
efficient for small to medium-sized circuits and have been
proposed as candidates for the NIST competition on post-
quantum signatures [2]–[5]. However, one drawback of the
proof size in a MPCitH-style signature is linear with the size of
the underlying circuit which renders this approach inefficient
for large-sized circuits.

In 2018, Boyle et al. [6] proposed a new ZKP framework
that makes use of Vector Oblivious Linear Evaluation (VOLE)
correlations to create a commit-and-prove ZK protocol. Re-
cently, several interactive ZK protocols [7]–[20] have been
proposed, which use subfield VOLE (sVOLE) correlations.
We will refer to these protocols as VOLE-ZK, which pro-
vide fast end-to-end runtimes and are scalable for large cir-
cuits compared to MPCitH-based ZK proofs. However, the
aforementioned VOLE-based ZK protocols are restricted to

a designated-verifier setting1. To overcome this restriction,
in 2023, Baum et al. [21] proposed the VOLE-in-the-Head
(VOLEitH) enabled VOLE-based ZK proofs to be publicly
verifiable. The VOLEitH-style signature can be instantiated
using AES as the one-way function. This creates the FAEST
signature scheme, which is a second-round candidate of the
NIST additional post-quantum signatures competition.

A key building block in both MPCitH and VOLEitH is the
All-but-one Vector Commitment (AVC). Informally, an AVC
scheme consists of four PPT algorithms, a Setup algorithm
which establishes the parameters, a Commit algorithm which
binds a hidden vector of values to commitment values, an
Open algorithm which randomly opens (i.e., outputs) all but
one of the previously committed values and a Verify algorithm
which ensures that the committed values and the hidden values
are consistent.

A. Related work

In current instantiations of AVC schemes, an initial seed
acting as the root of the Goldreich-Goldwasser-Micali (GGM)
tree [22] is extended to generate a set of pseudorandom
numbers by using a length-doubling pseudorandom gener-
ator (PRG) recursively. Revealing all but one leaf allows
verification of the commitments but retains the secrecy of
the prover’s witness. However, this construction requires a
logarithmic number of tree nodes to be sent to the verifier. Guo
et al. [23] replaced the length-doubling PRG with the Davies-
Meyer circular correlation robust (CCR) hash function [24]
and proposed a new tree structure, called a correlated GGM
(cGGM) tree. In a cGGM tree, the left child node is the
hash output of the parent node while the right child node
is computed by XORing the parent node and the left child
node. Then the sum of all nodes in one layer is a constant

1In a designated-verifier setting, a specified party, i.e., the “designated
verifier”, is introduced to prevent the verifier from turning around and
convincing others that they have the secret. The proof is constructed in such
a way that only the designated verifier can verify the proof, and no one else
can. This provides stronger privacy guarantees, as the prover can be assured
that only the intended verifier can learn anything about the secret.

value. The cGGM tree can reduce the number of hash calls
by half compared with the GGM tree, therefore this tree
is also referred to as a “half tree”. To be compatible with
the sVOLE approach [7], [25], whose security relies on the
pseudorandomness of leaf nodes, the authors use the PRG
when generating the leaf layer (to break down the correlation
of the nodes in the leaf layer). This new GGM tree is called
the pseudorandom cGGM tree (pcGGM).

There are a number of works focusing on constructing more
efficient AVC schemes [26]–[30] or security [2], [3], [3],
[31]–[35]. Details of these work can be referred to the full
version. Based on the literature review, the question remains
if we can propose a more efficient tree structure to construct
BAVC schemes while being against the multi-target attack
simultaneously or not.

B. Our contributions

In this paper, to improve the efficiency, we propose one
big cGGM tree to construct a new BAVC with aborts scheme
called BACON, which is more efficient than the state-of-
the-art BAVC with aborts scheme [27]. In short, a prover
generates one big cGGM tree with sufficient leaves to be
used for multiple AVCs. A verifier will provide a challenge
index to reveal all but one value in each AVC. Then a
prover can send the minimum number of cGGM tree nodes
to construct an authentication path for verification. The abort
mechanism allows the prover to request a new challenge
index if the number of tree nodes exceeds a threshold at
a small computational cost. After receiving a set of opened
cGGM nodes, the verifier recomputes the partial cGGM tree
recursively. Finally, the verifier checks whether the computed
commitment matches the given commitment. Choosing the
cGGM tree significantly reduces the cost of tree generation–
specifically, given a parent node, generating two child nodes
requires only a single invocation of the underlying hash
function. Furthermore, to resist collision attacks, we apply a
iv value as a master salt to internal nodes of the cGGM tree.
Moreover, we use AES in CTR mode, which allows the salt
to be varied easily using a counter. Our contributions are as
follows:

1) We propose a new big cGGM tree to construct a new
BAVC scheme, called BACON. Moreover, for notation
convenience, we make use of state-of-the-art non-tweaked
CCR hash function from [30] constructed using only AES
to meet all security levels.

2) We provide formal security proofs for our scheme, BA-
CON, under the ideal cipher model and random oracle
model.

3) We discuss the application of our BACON to
FAEST/FAEST version 2/ [29].

4) We compare our BACON with the large GGM tree-based
BAVC with aborts scheme [27] in theory and show our
BACON is more efficient.

II. PRELIMINARIES

GGM trees start with an initial random value and expand it
to numerous pseudorandom values. This is a binary tree that
recursively applies a length-doubling Pseudorandom Generator
PRG : {0, 1}λ → {0, 1}2λ to create a pseudorandom left
and right child nodes. To halve the computational cost, a
cGGM tree [23] instead uses a CCR hash function H where
the left node is defined as H(parent) and the right node as
left⊕parent = H(parent)⊕parent [23]. The hash function
calls is halved as a CCR hash function only requires one hash
function whilst a length-doubling PRG often need two. Let
λ be the security parameter and τ ∈ N be the repetition
parameter which determines the number of AVCs required.
Each AVC has a length Nα ∈ N, α ∈ [τ]. A GGM-type tree
has d ∈ N layers. The total number of leaves across all AVCs
is calculated as L = Σα∈[τ]Nα. Define the challenge index set
as I = (i(1), ..., i(τ)) ⊂ [N1] × ... × [Nτ]. Formally, a BAVC
with aborts is defined as follows [27]:

Definition 1: A BAVC with aborts =
(Setup,Commit,Open,Verify) (with message space
M). Let E, E−1 be the ideal cipher oracles.
• Setup(1λ)→ pp: This setup algorithm is run by the sender,

taking the security parameter λ as input and outputting
public parameters pp, which is input to all other algorithms.

• Commit(pp) → (com,decom,m =

(m
(α)
1 , ...,m

(α)
Nα

)α∈[τ]): This algorithm is run by the sender.
Given the public parameters pp as input and outputs a
commitment com with opening information decom for the
message vector m = (m

(α)
1 , ...,m

(α)
Nα

)α∈[τ] ∈MN1+···+Nτ .
• Open(decom, I) → decomI ∨ ⊥: This algorithm is run

by the sender. On input an opening decom and the index
vector I ⊂ [N1]×· · ·×[Nτ] chosen randomly by the sender,
output ⊥ or an opening decomI for I .

• Verify(com,decomI , I) →((
m

(α)
j

)
j∈[Nα]\{iα}

)
α∈[τ]

∨ ⊥: This algorithm is

run by the receiver. Given a commitment com, an opening
decomI , either output all messages

(
m

(α)
j

)
j∈[Nα]\{iα}

(accept the opening) or ⊥ (reject the opening).

III. BACON: A BAVC WITH ABORTS SCHEME

BACON adopts the cGGM tree [23] and AES-based CCR
hash [30] to construct a BAVC with aborts across three security
levels. To provide resistance against collision attacks, BACON
adds an iv value as a salt when constructing the cGGM tree.
Following section II, let L be the number of leaf nodes, d the
layer of the cGGM tree, so L = 2d. Let π : [0, 2d − 1] →
{(α, i)}1≤i≤Nα

be a bijective function mapping each leaf of
the big cGGM tree to each AVC, Topen be the threshold of
the number of internal nodes to be opened.

Let HCCR : {0, 1}λ → {0, 1}λ be a CCR hash function
defined in section II, and H : {0, 1}∗ → {0, 1}2λ be a
collision-resistant hash function. BACON is shown in Fig. 1.

BACON.Setup establishes the public parameters. In
BACON.Commit, a single cGGM tree with L leaves is

generated. All leaves are then interleaved into τ AVCs using
the mapping π. A message and its corresponding commitment
can be computed given a mapped leaf sd(α)

i using CCR hash
functions. The prover can then compute the final commitment
value h using all com(α)

i , α ∈ [τ].
BACON.Open computes the decommitment with respect

to the challenge set I , the decommitment consists of the
commitments of change set I and authentication path of
hidden nodes in I . The size of the opened nodes set |S|, is
then compared against a threshold Topen. If |S| ≤ Topen,
a new decommitment is produced as a new challenge set
is requested and the prover incurs a proof-of-work to do
so. A discussion this mechanism can be found in [27].
BACON.Verify recomputes the cGGM leaves given the final
commitment value, decommitment and challenge set. Finally
BACON.Verify compares the computed commitment value
with the given commitment value and decides whether the
commitment is valid or not.

IV. SECURITY ANALYSIS

We prove the security properties of BACON in this section.
We leverage the extractable-binding security property of the
HCCR [36]) proved in [30] to prove that an adversary is prob-
abilistically bounded in their ability to win in the extractable-
binding game in our scheme. For the hiding property, the proof
relies on the CCR property proved in [30]. Further, we model
the HCCR as an ideal cipher oracle.

Informally, a function fR(x, b) = H(x ⊕ R) ⊕ b · R is
CCR if it is pseudorandom provided that x is never repeated.
CCR hash functions can be constructed from a fixed-key block
cipher such as AES and a linear orthomorphism σ [30].

A. Security Model

A BAVC with aborts scheme must satisfy correctness,
extractable-binding and hiding (real-or-random):

Definition 2: A BAVC with aborts scheme is correct if for
all I ⊂ [N1]× · · · × [Nτ], the following outputs True

pp← Setup(λ)
(com,decom,m)← Commit(λ,pp)

∀decomI ← Open(decom, I)

output decomI = ⊥ ∨ Verify(com,decomI , I) =
m with all but a negligible probability, where m =(
m

(α)
1 , . . . ,m

(α)
Nα

)
α∈[τ]

.

Informally, a commitment scheme is extractable-binding if
there exists an extractor Ext such that the extracted message
equals to the opened message associated with a commitment.

Definition 3: Let the vector commitment scheme constructed
by two hash functions, HCCR and H, Ext be a PPT algorithm
such that:
• Ext(QH, QHCCR , com) → ((m

(α)
j)j∈[Nα])α∈[τ], i.e., given

two sets of oracles QH and QHCCR of query-response pairs,
and a commitment com, Ext outputs m

(α)
j or m(α)

j = ⊥ if
the committed value is invalid.

For any τ , Nα = poly(λ), the extractable-binding game
EBBAVC

A for BAVC with A is defined as follows:
1) pp→ Setup(1λ).
2) com← AH,HCCR(pp).
3) m̄ ← Ext(QH, QHCCR , com), where m̄ =

((m̄1
(α), ..., ¯mNα

(α))α∈[τ]) is a message vector output by
Ext.

4) (m,decomI , I) ← AH,HCCR(open, com), where m =

((m
(α)
j)j∈[Nα]\{iα})α∈[τ].

5) Output 1 (success) if: Verify(com,decomI , I) = m, but
m

(α)
j ̸= m̄

(α)
j for some α ∈ [τ], j ∈ [Nα] \ {iα}, where iα

is the index of unopened nodes. Else output 0 (failure).
The advantage of A to win is denoted by AdvEBBAVC

A =
Pr[EBBAVC

A = 1]. A BAVC with aborts scheme is ex-
tractable with respect to Ext if AdvEBBAVC

A is negligible, i.e.,
AdvEBBAVC

A (λ) ≤ negl(λ).
Informally, a BAVC with aborts is hiding if values at

unopened indices remain hidden even after opening a subset
of the vector. Formally:

Definition 4: (Hiding (real-or-random)). Let BAVC be an iv-
based vector commitment scheme. The adaptive hiding game
for BAVC with τ , Nα = poly(λ), parameter n and stateful A
is defined as follows:
1) pp→ Setup(1λ).
2) b̄← {0, 1}, sd← {0, 1}λ, iv← {0, 1}λ.
3) (com,decom, (m̄1

(α), ..., m̄N
(α))α∈[τ])←

CommitH(iv)
4) I ← AH(1λ,pp, com), where I ∈ [N1]× ...× [Nτ].
5) decomI ← Open(decom, I).
6) m

(α)
j ← m̄

(α)
j for j ∈ [Nα] \ {iα}, α ∈ [τ].

7) Set m(α)
iα
→

{
random from M if b̄ = 0 ∧ α ≤ n

m̄
(α)
iα

otherwise

}
.

8) b← A
((

m
(α)
j

)
j∈[Nα]

,decomI

)
9) Output 1 (win) if b̄ = b else 0 (lose).
In the selective hiding experiment, A must choose I prior to
receiving com.

The advantage AdvAdpHideBAVC
A,i (resp. AdvSelHideBAVC

A,i)
of an adversary A is defined by Pr[A wins and n = i]−1/2
in the adaptive (resp. selective) hiding game. We say BAVC
is adaptively (resp. selectively) hiding if every PPT adversary
A has a negligible advantage of winning AdvAdpHideBAVC

A,i

(AdvSelHideBAVC
A,i).

B. Security proofs

Following the security model in IV-A, in this section, we
give the security proof of BACON.

Theorem 1 (Correctness): BACON satisfies correctness.
We omit the proof here due to the page limit. Please refer to
the full version.

Theorem 2 (Extractable Binding): Let HCCR be a (qE , ε, δ)-
extractable binding CCR function in the ideal model, where
ε and δ are the upper bound of probability that the adversary
fails and succeeds in the extractable-binding experiment of
HCCR, respectively. HRO is a random oracle for the hash

• BACON.Setup(1λ, L)→ pp: Generate public parameters pp.
• BACON.Commit(sd, iv)→ (com,decom,m = (m

(α)
1 , ...,m

(α)
Nα

)α∈[τ]):
1) Sample k ← {0, 1}λ. k10||k11 = PRG(sd, iv; 2λ), where ∆ = k10 ⊕ k11
2) For i ∈ [2, d], j ∈

[
0, 2i−1

)
, compute ki2j = HCCR(k

i−1
j), ki2j+1 = ki2j ⊕ ki−1

j ;
3) Deinterleave the leaves: {

sd(α)
1 , . . . , sd(α)

Nα

}
α∈[τ]

π←
{
kd0 , · · · , kd2d−1

}
.

4) Compute m
(α)
i ← HCCR(sd(α)

i) and com(α)
i ← HCCR(sd(α)

i ⊕ 1)||HCCR(sd(α)
i ⊕ 2), for α ∈ [τ] and i ∈ [Nα].

5) Compute h(α) ← H
(

iv, com(α)
1 , . . . , com(α)

Nα

)
for α ∈ [τ] and compute h← H

(
iv, h(1), . . . , h(τ)

)
.

6) Output (com = h, decom = k, m = (m
(α)
1 , ...,m

(α)
Nα

)α∈[τ]).
• BACON.Open(decom = k, I = (i(1), ..., i(τ)))→ decomI ∨ ⊥:

1) Recompute kij for i ∈ [2, d], j ∈ [0, 2i−1) from k as in Commit.
2) Let S =

{
kd0 , . . . , k

d
2d−1

}
. For each α ∈ [τ], remove the associated path of nodes kπ−1(α,i(α)) from S.

3) For i from d− 1 to 0, j ∈ [0, 2i − 1], if ki2j ∈ S and ki2j+1 ∈ S, replace both with ki−1
j .

4) If |S| ≤ Topen, output decomI = ((com(α)

i(α))α∈[τ], S), otherwise output ⊥.

• BACON.Verify(com,decomI , I))→
((

m
(α)
j

)
j∈[Nα]\{i(α)}

)
α∈[τ]

∨ ⊥:

1) Recompute sd(α)
i from decomI , for each α ∈ [τ] and i ̸= i(α) using the available keys in S, and compute

m
(α)
i ← HCCR(sd(α)

i) and com(α)
i ← HCCR(sd(α)

i ⊕ 1)||HCCR(sd(α)
i ⊕ 2).

2) Compute h(α) = H
(

iv, com(α)
1 , . . . , com(α)

Nα

)
for each α ∈ [τ].

3) If h ̸= H
(
iv, h(1), . . . , h(τ)

)
output ⊥. Otherwise, output

((
m

(α)
i

)
i∈[Nα]\{i(α)}

)
α∈[τ]

.

Fig. 1. BACON

function H. Therefore, as defined in Definition 3, our proposed
cGGM-based BAVC with aborts scheme, BACON, satisfies
AdvEBBAVC

A ≤ 1+qH(qH−1)/2
22λ

+ L · (δ + ε) for any adversary
A making qE queries to the ideal cipher oracle and qH queries
to the random oracle.

Proof 1: Define the extractor as Ext (c,QE), c is a com-
mitment and QE is the transcript of ideal cipher queries and
responses. The extractor is supposed to output the pre-image
of the commitment c. The extractor goes through the random
oracle’s transcript and looks for the pre-image of com. If none
can be found or the pre-image is not unique, outputs ⊥.

Assuming that the pre-image com(α)
1 , . . . , com(α)

Nα
is unique

then the extractor applies Ext (comNi
,QE), Ni ∈ {1, ..., Nα}

to get mi. Finally, the extractor outputs {mi}i∈[1,Nα]. We
bound the probability AdvEBBAVC

A . Since HRO is a random
oracle, the probability of the extractor outputting ⊥ due to
finding a collision is bounded by 1

22λ
+ 2

22λ
+ · · · + qH−1

22λ
=

qH(qH−1)
2·22λ . The probability of not being able to find a pre-

image is bounded by 1
22λ

. Therefore, the extraction of com
succeeds except with probability 1+qH(qH−1)/2

22λ
. Furthermore,

the event of extraction failure for i /∈ I would imply extraction
failure for Ext (comNi

,QE), which is bounded by ε + δ.
Therefore, by taking a union-bound on all the leaf nodes, we

conclude that

AdvEBBAVC
A ≤ 1 + qH (qH − 1) /2

22λ
+ L · (δ + ε)

□
Theorem 3 (Hiding real-or-random): Let HCCR be

(t, q, p, ϵ)-circular correlation robust and let H be a random
oracle. For any adversary A in the adaptive hiding game
making |Q| queries to H, we have

AdvAdpHideBAVC
A,i ≤

|Q|
22λ

+ AdvPRG
B (λ) + ϵ

Proof 2: Let B be a distinguisher who can access the CCR
hash oracle OCCR, where OCCR(x, b) = HCCR(x⊕∆)⊕ b ·∆.
B, who is regarded as an adversary against the CCR game,
works as follows:
1) Sample b̄, sdα ← {0, 1}λ, iv← {0, 1}2λ.
2) Generate com, decomI and m as follows:

• Sample decom, {com(α)
i } and {m(α)

i }, α ∈ [τ], i ∈ I ,
uniformly at random.

• Compute {mi}i/∈I and {comi}i/∈I using the Verify al-
gorithm.

• Compute com = H(com1, ..., comNα
).

3) Receive the challenge I ← AH(1λ,pp, com), where I is
the set of opened nodes and I ∈ [N1]× ...× [Nτ].

4) i(α) is the index of the unopened node in the subtree α,
i(α) = α1...αd. If αi = 0, we need to compute the right
child, which is an element of the authentication path.

5) We assume that α1 = 1, which means the authentication
path starts from the right subtree. Then the simulation
process of Commit is as follows:

a) Samples k1ᾱ1
← {0, 1}λ and sets si

(α)

1 = k1ᾱ1
and add

si
(α)

1 to S if si
(α)

1 is not in S.
b) For i ∈ [2, d], let j∗ = α1||...||αi−1 computes kij∗+ᾱi

=

OCCR(si
(α)

i−1, ᾱi)⊕ ᾱis
i(α)

i−1. For all j ∈
[
0, 2i−1

)
, j ̸= j∗,

computes ki2j = HCCR(k
i
j), ki2j+1 = HCCR(k

i
j) ⊕ kij .

Finally, updates si
(α)

i = si
(α)

i−1 ⊕ kij∗+ᾱi
and add si

(α)

i to
S if si

(α)

i is not in S.
c) For i(α) ∈ I , computes m

(α)
i ← OCCR(s

i(α)

d , 0) and
com(α)

i ← OCCR(s
i(α)

d ⊕ 1, 0)||OCCR(s
i(α)

d ⊕ 2, 0). Oth-
erwise, for i ∈ [0, Nα) ⊆ [0, 2d) but i /∈ I , computes
mi ← HCCR(k

i
d) and comi ← HCCR(k

i
d⊕1)||HCCR(k

i
d⊕

2).
d) Compute h(α) by simulating the oracle H by inputting(

iv, com(α)
1 , . . . , com(α)

Nα

)
for α ∈ [τ].

6) Repeat steps 1, 2, 3, 4 and 5 for τ times to recompute the
big cGGM trees and get all messages and commitments
for all hidden nodes.

7) Compute h by simulating the oracle H via inputting(
iv, h(1), . . . , h(τ)

)
.

8) Output (com = h, decomI = S, m =

(m
(α)
1 , ...,m

(α)
Nα

)α∈[τ]).
9) Assign decomI and the adversary A outputs b.

10) Output 1 if b̄ = b, else 0.
B’s advantage. b is the CCR oracle OCCR’s hidden bit. If
b = 1, then B is in the real world. If b = 0, B is in the real
world is in the ideal world. The advantage that B distinguishes
the CCR hash game is

AdvCCR
B (λ) =

∣∣Pr[1← BOCCR(1λ) | b = 1]

−Pr[1← BOCCR(1λ) | b = 0]
∣∣

Except the CCR oracle, there are two differences between the
real adaptive game and the ideal world simulated by B for A:
B aborts if the simulation of OH fails; k10 and k11 are chosen
uniformly random, instead of computed by PRG. The first
difference during the simulation of OH can be noticed if A
make queries to OH using the same iv value. Then we can get
the probability that A that notices this difference as follows:

Pr[A notices OH] ≤
|Q|
22λ

The second difference can be reduced to distinguishing the
output of PRG from a uniformly random output. The prob-
ability that A behaves differently equals to the case that B
plays the PRG game using A as a subroutine. Then we can
get

Pr[A notices PRG] ≤ AdvPRG
B (λ) (1)

If b = 1, then after changes 1 and 2, A’s view is distributed
identically to the real hiding game G0 if b̄ = 1 and A’s

view is distributed identically to the ideal game G1 if b̄ = 0.
Therefore, we can get

Pr[1← BOCCR(1λ) | b = 1] = Pr[A wins changed game]

If b = 0, the view of A is sampled uniformly at random. The
we have

Pr[1← BOCCR(1λ) | b = 1] = 1/2

Finally, putting all cases together, we can get

AdvAdpHideBAVC
A,i (λ) ≤ |Q|

22λ
+AdvPRG

B (λ)+AdvHCCR
B (λ) (2)

Because HCCR is a (t, q, p, ϵ)-circular correlation robust hash
function, we can get the

AdvAdpHideBAVC
A,i ≤

|Q|
22λ

+ AdvPRG
B (λ) + ϵ

V. APPLICATIONS

Our BACON, as a building block, can be applied to the
FAEST signature. Due to the page limit, we omit details here.
Please refer to full version.

VI. COMPARISONS

Comparisons among a GGM tree, a pcGGM tree and a
cGGM tree are shown in Table I. Given a tree with d
layers, a GGM construction requires (2d−1 − 1) PRG calls
and therefore (2d − 2) hash calls, a cGGM tree requires
(2d−1 − 1) HCCR hash calls, and a pcGGM tree requires
(2d−1 + 2d−2 − 1) HCCR hash calls. We can have 2d − 2 =
20+...+2d−2+2d−1−1 > 2d−2+2d−1−1. Then the efficiency
result of these three tree constructions in descending order of
cost as GGM tree [22]>pcGGM tree [23]>cGGM tree [23].
Moreover, adding the number of hash calls used in generating
the commitments from the leaf layer, we list the results
in Table II. We initially implemented BACON on FAEST.
However, the NIST has released an updated version, FAEST
v2 which replaced the hash function calls and revisited the
evaluation of the AES block ciphers to achieve improvements
on both security and practical efficiency [29]. We will integrate
BACON with FAEST v2 once the latter is publicly available.

TABLE I
COMPARISONS AMONG TREE CONSTRUCTIONS

Type Tree construction Number of CCR hash calls

Small tree
GGM tree [22] (2d − 2)

pcGGM tree [23] (2d−1 + 2d−2 − 1)
cGGM tree [23] (2d−1 − 1)

Big tree GGM tree [27] 2d − 2
Our cGGM tree 2d−1 − 1

For big tree constructions, we assume there are τ small trees and
one small tree i, i ∈ [τ] has Ni leaf nodes, then the total number
of layers in a big cGGM tree d = log2 (

∑τ
i=1 Ni).

VII. CONCLUSIONS

This paper presents BACON, a BAVC based on one cGGM
tree which is more efficient than state-of-the-art. We proved
the security of BACON in the random oracle model and ideal
cipher model.

TABLE II
COMPARISONS BETWEEN TWO LARGE TREE-BASED VECTOR

COMMITMENT SCHEMES

Scheme Number of function calls
[27] (2d − 2)HCCR + 3 ∗ 2dH

Our BACON (2d−1 − 1)HCCR + 3 ∗ 2dH

VIII. ACKNOWLEDGMENT

This work was supported by the European Union’s Horizon
research and innovation program for support under grant
agreement numbers: 101069688 (CONNECT), 101070627
(REWIRE), 101095634 (ENTRUST) and 101167904 (CAS-
TOR). These projects are funded by the UK government’s
Horizon Europe guarantee and administered by UKRI. This
work is also partially supported by the Gates Foundation
[INV-057591]; under the grant conditions of the Foundation,
a Creative Commons Attribution 4.0 Generic License has
already been assigned to the Author’s Accepted Manuscript.

REFERENCES

[1] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-knowledge
proofs from secure multiparty computation,” SIAM Journal on
Computing, vol. 39, no. 3, pp. 1121–1152, 2009.

[2] C. D. de Saint Guilhem, L. De Meyer, E. Orsini, and N. P. Smart, “BBQ:
using AES in picnic signatures,” in International Conference on Selected
Areas in Cryptography, 2019, pp. 669–692.

[3] C. Baum, C. D. de Saint Guilhem, D. Kales, E. Orsini, P. Scholl, and
G. Zaverucha, “Banquet: short and fast signatures from AES,” in PKC,
2021, pp. 266–297.

[4] C. Delpech de Saint Guilhem, E. Orsini, and T. Tanguy, “Limbo: efficient
zero-knowledge MPCitH-based arguments,” in ACM CCS, 2021, pp.
3022–3036.

[5] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-interactive zero
knowledge with applications to post-quantum signatures,” in ACM CCS,
2018, pp. 525–537.

[6] E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai, “Compressing vector
OLE,” in ACM CCS, 2018, pp. 896–912.

[7] C. Weng, K. Yang, J. Katz, and X. Wang, “Wolverine: fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and
arithmetic circuits,” in IEEE Symposium on Security and Privacy (S&P),
2021, pp. 1074–1091.

[8] S. Dittmer, Y. Ishai, and R. Ostrovsky, “Line-point zero knowledge and
its applications,” Cryptology ePrint Archive, Paper 2020/1446, 2020.
[Online]. Available: https://eprint.iacr.org/2020/1446

[9] C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl, “Mac‘ n‘cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested
disjunctions,” in CRYPTO, 2021, pp. 92–122.

[10] K. Yang, P. Sarkar, C. Weng, and X. Wang, “Quicksilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over any
field,” in ACM CCS, 2021, pp. 2986–3001.

[11] N. Franzese, J. Katz, S. Lu, R. Ostrovsky, X. Wang, and C. Weng,
“Constant-overhead zero-knowledge for RAM programs,” in ACM CCS,
2021, pp. 178–191.

[12] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique: Efficient
conversions for zero-knowledge proofs with applications to machine
learning,” in USENIX Security, 2021, pp. 501–518.

[13] S. Dittmer, Y. Ishai, S. Lu, and R. Ostrovsky, “Improving line-point zero
knowledge: two multiplications for the price of one,” in ACM CCS,
2022, pp. 829–841.

[14] C. Weng, K. Yang, Z. Yang, X. Xie, and X. Wang, “AntMan: Interactive
zero-knowledge proofs with sublinear communication,” in ACM CCS,
2022, pp. 2901–2914.

[15] C. Baum, L. Braun, A. Munch-Hansen, and P. Scholl, “Moz Z2k arella:
efficient vector-ole and zero-knowledge proofs over Z2k ,” in CRYPTO,
2022, pp. 329–358.

[16] Y. Yang, D. Heath, C. Hazay, V. Kolesnikov, and M. Venkitasubrama-
niam, “Batchman and robin: Batched and non-batched branching for
interactive zk,” in ACM CCS, 2023, pp. 1452–1466.

[17] S. Dittmer, K. Eldefrawy, S. Graham-Lengrand, S. Lu, R. Ostrovsky, and
V. Pereira, “Boosting the performance of high-assurance cryptography:
Parallel execution and optimizing memory access in formally-verified
line-point zero-knowledge,” in ACM CCS, 2023, pp. 2098–2112.

[18] D. Bui, H. Chu, G. Couteau, X. Wang, C. Weng, K. Yang, and Y. Yu,
“An efficient ZK compiler from SIMD circuits to general circuits,”
Cryptology ePrint Archive, Paper 2023/1610, 2023. [Online]. Available:
https://eprint.iacr.org/2023/1610

[19] F. Lin, C. Xing, and Y. Yao, “More efficient zero-knowledge protocols
over Z2k via galois rings,” in CRYPTO, 2024, pp. 424–457.

[20] Y. Yang and D. Heath, “Two shuffles make a RAM: Improved constant
overhead zero knowledge RAM,” in USENIX Security, 2024, pp. 1435–
1452.

[21] C. Baum, L. Braun, C. D. de Saint Guilhem, M. Klooß, E. Orsini,
L. Roy, and P. Scholl, “Publicly verifiable zero-knowledge and post-
quantum signatures from VOLE-in-the-head,” in CRYPTO, 2023, pp.
581–615.

[22] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” Journal of the ACM (JACM), vol. 33, no. 4, pp. 792–807,
1986.

[23] X. Guo, K. Yang, X. Wang, W. Zhang, X. Xie, J. Zhang, and Z. Liu,
“Half-tree: Halving the cost of tree expansion in COT and DPF,” in
EUROCRYPT, 2023, pp. 330–362.

[24] R. S. Winternitz, “A secure one-way hash function built from DES,” in
IEEE Symposium on Security and Privacy (S&P), 1984, pp. 88–88.

[25] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and
P. Scholl, “Efficient two-round ot extension and silent non-interactive
secure computation,” in ACM CCS, 2019, pp. 291–308.

[26] D. Bui, K. Cong, and C. D. de Saint Guilhem, “Faster VOLEith signa-
tures from all-but-one vector commitment and half-tree,” in Australasian
Conference on Information Security and Privacy, 2025, pp. 205–223.

[27] C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher, C. Rech-
berger, L. Roy, and P. Scholl, “One tree to rule them all: Optimizing
GGM trees and OWFs for post-quantum signatures,” in ASIACRYPT,
2025, pp. 463–493.

[28] C. Baum, L. Braun, C. Delphech de Saint Guilheme, M. Kloop,
C. Majenz, S. Mukherjee, S. Ramacher, C. Rechberger, E. Orsini, L. Roy,
and P. Scholl, “FAEST: Algorithm specifications version 2.0,” 2025,
https://csrc.nist.gov/csrc/media/Projects/pqc-
dig-sig/documents/round-2/spec-files/faest-spec
-round2-web.pdf.

[29] C. Baum, W. Beullens, L. Braun, C. De Saint Guilhem, M. Klooß,
C. Majenz, S. Mukherjee, E. Orsini, S. Ramacher, C. Rechberger
et al., “Shorter, Tighter, FAESTer: Optimizations and improved (QROM)
analysis for VOLE-in-the-Head signatures,” in CRYPTO, 2025.

[30] H. Cui, C. Guo, X. Wang, C. Weng, K. Yang, and Y. Yu, “AES-based
CCR hash with high security and its application to zero-knowledge
proofs,” Cryptology ePrint Archive, Paper 2024/1271, 2024. [Online].
Available: https://eprint.iacr.org/2024/1271

[31] I. Dinur and N. Nadler, “Multi-target attacks on the picnic signature
scheme and related protocols,” in EUROCRYPT, 2019, pp. 699–727.

[32] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ra-
macher, C. Rechberger, D. Slamanig, J. Katz, x. Wang, V. Kolesnikov,
and D. Kales, “Picnic,” 2020, https://csrc.nist.gov/projects/post-quantum
-cryptography/post-quantum-cryptography-
standardization/round-3-submissions.

[33] T. Feneuil, A. Joux, and M. Rivain, “Syndrome decoding in the head:
Shorter signatures from zero-knowledge proofs,” in CRYPTO, 2022, pp.
541–572.

[34] C. Aguilar-Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and
D. Yue, “The return of the sdith,” in EUROCRYPT, 2023, pp. 564–596.

[35] S. Kim, B. Lee, and M. Son, “Relaxed vector commitment for shorter
signatures,” IACR Preprint, 2024.

[36] C. Guo, J. Katz, X. Wang, and Y. Yu, “Efficient and secure multiparty
computation from fixed-key block ciphers,” in IEEE Symposium on
Security and Privacy (S&P), 2020, pp. 825–841.

